《突破 | 北大电子学院微波光子团队与合作者在光生微波领域取得重要进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-05-21
  • 高稳定低噪声微波信号在时频计量、射电天文、雷达导航等领域发挥着不可替代的作用。传统的电学微波合成方式在稳定性和噪声控制方面已逼近技术瓶颈,而基于光电子技术的微波合成方案为突破这一瓶颈提供了新的路径。在众多方案中,由超稳激光与光频梳构成的光分频方案表现尤为突出,该系统将应用于光钟的超稳激光通过光频梳分频至微波,可产生目前已知的稳定性最高、噪声最低的微波信号(团队成员解晓鹏助理教授是此方案的纪录保持者)。然而,现有光分频系统普遍存在体积庞大、结构复杂等问题,严重制约了其实际应用。如何构建紧凑且高鲁棒性的光分频系统,并进一步探索其噪声极限,已成为微波光子领域亟待攻克的重要课题。

    近5年,光子传输与通信全国重点实验室的北京大学电子学院微波光子团队与中国计量科学研究院、德国联邦物理技术研究院、北京大学物理学院等团队密切合作,提出了一种基于高相干双波长激光器与电光梳的双点分频法方案,探索了该系统的噪声极限,并取得了纪录性的成果,解决了传统方案在结构复杂性方面的难题。2025年4月29日,相关研究成果以《高相干双波长激光器及其在低噪声微波产生中的应用》(“Highly coherent two-color laser and its application for low-noise

    microwave generation”)为题,在线发表于《自然·通信》(Nature Communications)。

    为实现双点分频法方案的噪声极限,团队采用了PDH稳频技术(如图1所示),将两台激光器同步至同一超稳光学法布里-珀罗(F-P)腔,使得两台激光器之间的相对稳定性远优于各自的绝对稳定性,最终实现了高相干的双波长激光器。PDH稳频技术被广泛应用于全球计量实验室,能够实现目前已知的最稳定连续激光。过去5年来,团队深入研究并有效抑制了双波长激光器系统中的各类噪声,双波长激光器的相对相位噪声达到-52dBc/Hz@1Hz,归一化至光频的分数频率不稳定性达到2.7E-17@1s,达到国际先进水平。

    图1. 双波长激光器

    在高稳定高相干双波长激光器的基础上,团队利用4.2nm的电光梳将双波长激光器的相对稳定性下转换至微波信号的稳定性,实现高稳定微波信号合成。电光梳的使用大大简化了传统光分频系统的复杂性。由于产生微波信号的相位噪声低于所有商用相位噪声分析仪的噪底,团队研制了两套独立的系统进行拍频相位噪声表征。最终产生的25GHz微波信号的相位噪声达到-74dBc/Hz@1Hz,分数频率不稳定性达6E-14@1s,与当前时间频率计量领域最好的氢钟秒稳相当,代表着双点分频法的国际最高水平。

    在研究高稳定高相干双波长激光器的过程中,团队掌握了下一代光钟所需的超稳激光锁定技术。除了本工作中用于光生微波的应用外,高相干双波长激光器还被期望应用于高精度干涉仪、CPT原子钟和量子计算等领域。

    图2. 电光分频系统结构与微波相位噪声测试结果

  • 原文来源:https://www.nature.com/articles/s41467-025-59401-1
相关报告
  • 《突破 | 中国科大在铌酸锂高频声波器件领域取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-12
    • 近日,中国科大微电子学院左成杰教授课题组两篇论文入选2023年国际微波会议(IMS,全称为:IEEE International Microwave Symposium)。IEEE IMS是国际微波领域的全球著名学术会议,IMS 2023于6月11日至16日在美国San Diego举办,今年在微波声学方向总共只收录了六篇Oral论文,其中包括中国科大的两篇。 随着无线通信从5G向Beyond 5G (B5G)和6G发展,有些国家已经将6 GHz全频段授权用于Wi-Fi 7,而更多的国家在考虑将此频段部分用于蜂窝无线通信(5.5G或者6G)。因此,源于对不同制式和频段间信号的隔离需求,工作在6 GHz的高品质因数(Q值)声波谐振器以及高性能滤波器将会成为下一阶段无线通信发展的关键技术。另一方面,Sub-7 GHz频段的大规模使用(包括6G、Wi-Fi 7、UWB等)将会导致频带越发地拥挤,所以针对更高频率(甚至毫米波频段)的无线通信技术的布局与探索也显得至关重要。因此,6 GHz及以上的高频、高性能声波谐振器和滤波器都是我国6G以及Wi-Fi产业发展必须要自主可控的基础元器件和核心芯片技术。该课题组针对上述战略需求做了以下两项工作: 1、高滚降无杂散S1模态高频声波滤波器 针对6 GHz频段的滤波器,该课题组前期实现了一阶对称兰姆波(简称S1模态)谐振器Q值的突破(Zhongbin Dai, et al., IEEE Electron Device Letters, vol. 43, no. 7, 2022),但由于这一模态的寄生振动复杂,在滤波器设计中使用S1模态谐振器仍然存在很大的挑战。杂散振动不仅会导致滤波器带内纹波大,还会恶化插入损耗。因此,基于已有谐振器的高Q值特性,抑制S1模态的杂散振动,是实现高滚降滤波器的有效方案。 该课题组研究了基于X切向的铌酸锂压电薄膜中S1模态的传播特性,分析了杂散模态产生的原因,研究了自由压电区域和金属覆盖区域对于杂散模态振动频率和振动幅度的影响,选取了最佳的金属间距和电极宽度,成功制备出了无杂散的S1模态高频声波谐振器。该研究采用一阶T型拓扑结构的滤波器电路,能够最大化地利用S1模态的高Q值特性,从而获得最陡峭的滚降。最终测试结果表明,滤波器中的串联谐振器的工作频率在6.4 GHz附近,带内杂散模态被抑制,具有989的品质因数(Q值)和3.3%的机电耦合系数(k2)。基于带内无杂散的S1模态谐振器,所制备的滤波器测试结果表明,中心频率为6.4 GHz,插入损耗为2.6 dB,带内纹波小于0.5 dB,带外抑制点深度为40 dB。在通带右侧,基于谐振器高达989的Qp,滤波器在55 MHz的过渡带内实现了从插入损耗2.6 dB到40 dB带外抑制的陡峭滚降。这是国际上首次实现基于S1模态的6 GHz声波滤波器,其性能证明了谐振器高Q值对于高频滤波器设计的重要性。研究成果以“A 6.4-GHz Spurious-Free Acoustic Filter based on Lithium Niobate S1-Mode Resonator”为题发表在IMS 2023上,第一作者为我校微电子学院硕士生刘雪彦,微电子学院左成杰教授为论文的通讯作者。 图1、S1高频无杂散声波器件 (a)谐振器截面示意图,(b)谐振器SEM图像,(c)谐振器测试导纳曲线,(d)测试所得滤波器传输特性 2、高机电耦合系数超高频声波谐振器 当前,提高超高频(> 20 GHz)声波谐振器的性能仍然存在很大的挑战,频率提高带来的更大损耗导致谐振器难以实现高Q值;同时,更高的谐振频率要求压电薄膜更薄,这会导致器件的鲁棒性降低。因此,寻找新的振动模态,以及革新压电薄膜的衬底结构都是业界追逐的焦点。 该课题组基于Y128°切向的铌酸锂压电薄膜中第三阶反对称兰姆波(简称A3模态)的传播特性,选取了最佳的电极排布方向,并优化了薄膜的刻蚀工艺,成功制备出高机电耦合系数(k2)的超高频声波谐振器。该研究采用了X方向的电极排布,能够最大化地激发铌酸锂薄膜中的A3模态,从而获得最大的机电耦合系数。刻蚀工艺的优化能够使谐振器的侧边具有更好的垂直度,从而能有效反射声波能量回到谐振器体内,进而提升谐振器Q值。最终测试结果表明该器件的工作频率在20.4 GHz附近,具有461的品质因数(Q值)和6.95%的机电耦合系数(k2),表现出良好的器件优值(FoM = Q·k2 = 32),这是当前已报道的工作在该频段的最大谐振器优值。研究成果以“A 20.4-GHz Lithium Niobate A3-Mode Resonator with High Electromechanical Coupling of 6.95%”为题发表在IMS 2023上。第一作者为我校微电子学院博士生林福宏,微电子学院左成杰教授为论文的通讯作者。 图2、A3超高频高耦合声波谐振器 (a)谐振器SEM图像,(b)谐振器测试导纳曲线
  • 《突破 | 吉林大学研究团队在集成光子芯片领域取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-06-06
    • 日前,吉林大学电子科学与工程学院超快光电技术研究团队在集成光子芯片领域取得重要进展,该研究成果以“Non-Abelian braiding on photonic chips”为题在线发表于《自然•光子学》。 飞秒激光直写技术是一种将脉冲激光光束聚焦于材料表面或内部,通过激光焦点与材料的非线性相互作用,引起材料性质改变的微纳加工技术。得益于其独特的加工方式,飞秒激光直写技术可以实现任意三维形状结构的加工制备,这给片上三维光子集成提供了可能。然而,当前成熟的片上光子器件的设计原理大多是面向二维芯片,面向第三个空间维度的研究仍然十分缺乏。将片上光子集成推广到三维,除了可以在物理空间上为提高器件的集成度提供直接解决方案,更可以提供新的物理自由度用于设计新型片上光子操控手段。 图.光子芯片上多个光子态的非阿贝尔编织实验 针对飞秒激光直写三维光子芯片的巨大应用潜力,研究团队提出并在芯片上成功验证了一种新型三维光子集成与操控机制??非阿贝尔编织机制,用于实现片上光量子逻辑等应用。非阿贝尔编织的概念最早在凝聚态领域被提出,用于实现受拓扑保护的量子计算。非阿贝尔编织本质上是实现一个幺正矩阵变换,因此可以利用光学体系中的贝里几何相位矩阵来实现这一操作。 沿着这一思路,研究团队在光子芯片上成功实现了多达五个光子模式的非阿贝尔编织现象,通过激光实验和单光子实验分别验证了非阿贝尔编织的重要特性---编织结果依赖于编织顺序,并通过巧妙的干涉实验提取了非阿贝尔规范势引起的贝里相位矩阵。该编织机制具有非常好的可拓展性,通过拓展编织模式的个数和编织步骤可以构造丰富的贝里相位矩阵,面向片上光量子逻辑等应用。未来通过拓展非阿贝尔编织机制到其它光学系统中,利用贝里相位矩阵作为新的自由度,将为研究者们提供更多的手段来操控光子。