《中国科大在少层黑磷的化学功能化及稳定性研究方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-01-04
  • 中国科学技术大学杨上峰教授、杨金龙教授、季恒星教授等课题组合作,在少层黑磷的化学功能化及稳定性研究方面取得新进展。他们通过叠氮化合物与少层黑磷纳米片反应,成功地实现了五配位共价功能化少层黑磷纳米片,显著地提高了其在水中的稳定性,效果优于文献中报道的其他化学功能化方法。相关研究成果于 12 月 10 日在线发表在国际著名学术期刊《德国应用化学》上( Angew. Chem. Int. Ed. 2018 , 10.1002/anie.201813218 )。

    少层黑磷作为一种新型二维材料,具有带隙随层数可调,载流子迁移率高的特点,在能量转换和存储、催化、生物医药等领域有着重要的应用前景。但是,由于第五主族的磷原子上存在孤对电子,导致少层黑磷纳米片( BPNSs )很容易被氧化降解,其在空气及水环境中稳定性差的问题严重制约了黑磷的应用。因此如何提高黑磷的稳定性是当前黑磷材料研究急需解决的问题。共价功能化是目前成功用于钝化高反应活性的 BPNSs 的一种非常重要的方法。然而,目前文献中报道的共价功能化方法仅限于通过重氮盐功能化或亲核加成反应形成 P-C 或 P-O-C 单键,虽然可以提高 BPNS s 的稳定性,但是反应后的磷原子为四配位结构,仍然存在一个未配位的单电子,必然制约了其钝化效果。因此,发展新的共价功能化 BPNSs 的方法从而实现更好的钝化效果是非常必要的。

    研究人员通过将 BPNSs 与叠氮化合物反应,成功地在黑磷上加成了 P=N 双键,获得了氮杂苯甲酸修饰的黑磷纳米片( f-BPNSs )。有趣的是,通过跟踪该反应进程,他们发现开始反应阶段形成了两种产物(分别为加成了 P=N 双键和 P-N 单键的产物),随着反应的进行, P-N 单键的加成产物逐渐向 P=N 双键的加成产物转化,最终产物为 P=N 双键的加成产物。随后,他们利用紫外 - 可见光谱跟踪了 f-BPNSs 以及原始的 BPNSs 在水中(无脱氧条件下)放置 21 天的衰减情况,发现 f-BPNSs 在水中的稳定性提高了约 12 倍,而且比文献中报道的重氮盐功能化的钝化效果也提高了约 4.7 倍。其原因在于在磷原子上加成了 P=N 双键后,磷原子为五配位的配位饱和态,孤对电子得以完全成键,因此钝化效果优于文献中报道的基于四配位磷原子的重氮盐功能化方法。该结果证实了通过五配位共价功能化的策略可以实现更好的稳定 BPNSs 的效果,加深了对黑磷的化学性质的认识,为黑磷的实际应用奠定了基础。

    合肥微尺度物质科学国家研究中心博士生刘亚娟为该论文的第一作者,杨上峰教授、杨金龙教授、季恒星教授为共同通讯作者。该项研究得到了科技部、国家自然科学基金委和量子信息与量子科技前沿协同创新中心的资助。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=380412
相关报告
  • 《清华大学曹化强《自然·通讯》:在黑磷烯纳米带研究方面取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-08-18
    • 8月6日,清华大学化学系曹化强教授课题组及其合作者在《自然·通讯》(Nature Communications)在线发表了题为“将块体黑磷以‘拉开拉链’方式制备成锯齿取向黑磷烯纳米带”(Unzipping of black phosphorus to form zigzag-phosphorene nanobelts)的研究论文。研究团队利用电化学手段控制氧分子浓度,制备出沿锯齿型(zigzag)取向的纳米带;同时,通过调节电流密度可实现黑磷烯纳米片、纳米带和量子点的可控制备;通过理论计算揭示了氧分子对黑磷烯实现定向切割的机理;利用所制备的黑磷烯纳米带构建场效应晶体管器件并对其载流子输运特性进行了深入研究。 黑磷烯二维纳米结构,包括单原子层黑磷烯和少层黑磷烯(<10层)。与石墨烯不同,黑磷烯本身具有带隙以及独特的各向异性。理论计算预测,黑磷烯在zigzag方向具有比摇椅型(armchair)方向具有更加优异的热学、力学以及半导体性质,因此zigzag取向黑磷烯纳米带在热电、柔性电子和量子信息技术等领域的应用引起了研究者的广泛兴趣。然而,受限于黑磷烯的稳定性以及现有的合成技术,黑磷烯纳米带有效制备成为其研究及应用的关键瓶颈。 受启发于黑磷在空气环境中可被氧化分解,团队设计了一种通过电化学方法,通过改变电流密度有效调节离子插层速率和黑磷烯周边的氧分子浓度,从而可控制备黑磷烯纳米结构的维度和尺寸,获得一系列黑磷烯纳米结构,包括纳米片、纳米带和量子点(图1)。结构表征证明了所制备的黑磷烯纳米带具有很好的结晶性和柔韧性。 图1 锯齿取向黑磷烯纳米带(z-PNB)的结构表征 图2 电化学解离黑磷晶体形成锯齿取向黑磷烯纳米带(z-PNB)的机理 该电化学解离机制认为制备过程分为两步,即离子插层和氧驱动解离过程(图2)。在电化学过程中,BF4-离子沿黑磷a轴方向(即[100]方向,沿zigzag方向)插入黑磷晶体层间,同时,氧分子被化学吸附、解离在黑磷表面上形成悬键氧,通过悬键氧与水分子形成氢键及P-O-P水解,导致P-P键断开,沿着zigzag方向以“拉开拉链”的方式持续进行,被解离成纳米带。理论计算分析、比较了各种氧分子在黑磷烯上的吸附和解离路径(图3)。结果表明,形成间隙氧对是解离黑磷晶体P-P键并最终形成zigzag取向黑磷烯纳米带的关键步骤。 图3 氧驱动解离块体黑磷反应机理的理论计算 研究团队采用铜网掩膜法设计制备了基于黑磷烯纳米带的场效应晶体管器件并探究了其载流子输运特性,可实现器件p-n型之间的转化,为黑磷烯纳米带在主动式矩阵显示技术、射频器件及互补型金属氧化物半导体器件技术中的应用提供了关键材料和开辟新的研究方向。 图4 黑磷烯纳米带(z-PNB)的电子性能 清华大学化学系教授曹化强、清华大学微纳电子系副研究员谢丹和英国剑桥大学材料科学与冶金系教授Anthony K. Cheetham为本文共同通讯作者,化学系博士生刘志方、微纳电子系博士生孙翊淋为共同第一作者。南开大学材料科学与工程学院、稀土与无机功能材料研究中心李伟教授,中国科学院高能物理研究所王嘉鸥副研究员参与了该项研究。本工作获得了国家重点研发计划和国家自然科学基金的支持。
  • 《中国科学院海洋研究所在天然多糖功能材料研究方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-06-25
    • 近日,中国科学院海洋研究所实验海藻化学与海洋药物研究团队在天然多糖功能材料研究方面取得新进展。团队成功从羽藻目绿藻强壮硬毛藻?Chaetomorpha valida?中提取出一种结构独特、富含阿拉伯糖的硫酸化杂多糖(CVP),该多糖可溶于水形成具备自修复与热响应特性的天然水凝胶(CVG)。该材料性能可调、来源天然,兼具良好的生物相容性和加工适应性,在食品、生物医药和化妆品等多个领域展现出广泛应用潜力。相关研究成果以“A sulfated arabinose-rich polysaccharide hydrogel from Chaetomorpha valida: preparation,properties and mechanisms”为题,发表于国际生物高分子材料期刊?International Journal of Biological Macromolecules。 CVP是首个发现的具有凝胶形成能力的富含阿拉伯糖的硫酸化多糖。该多糖具有“三重智能”凝胶行为。CVP水溶液在无需外加交联剂的条件下,仅凭分子间氢键和物理缠结作用,即可在室温下自组装形成稳定三维网络结构,形成自支撑水凝胶(CVG),展现出良好的热响应性和自修复能力。流变学表征,CVG经历高速剪切破坏后,能在10秒内迅速重组分子网络,恢复90%左右的储能模量,显示出优异的自愈性能。同时,细胞实验验证了其良好的生物相容性,为其在医疗与组织工程领域的应用奠定了生物安全基础。 为进一步提升水凝胶的机械强度与热稳定性以适应复杂应用场景,研究团队引入硼酸盐交联策略,成功制备出增强型水凝胶(CVBG)。通过调控硼酸盐浓度,材料的结构致密性、热稳定性及力学强度均实现显著提升。结构机制研究表明,CVG的稳定性主要来源于多糖链之间的氢键及潜在的三重螺旋结构协同作用;而在CVBG体系中,硼酸盐与多糖羟基间形成的B–O共价键是实现网络增强的关键。 该项研究不仅丰富了天然多糖水凝胶的结构与功能体系,也为其在多个领域的实际应用奠定了基础。未来,该材料有望广泛应用于食品添加剂、3D生物打印墨水、可注射组织工程支架、智能伤口敷料、化妆品保湿载体等方向。 本论文由中国科学院海洋研究所博士研究生冷月洋为第一作者,王晶研究员与张全斌研究员为共同通讯作者。研究得到了国家自然科学基金与山东省重点研发计划等项目支持。 相关论文: Yueyang Leng,Jing Wang*, Ning Wu, Yang Yue, Lihua Geng, Quanbin Zhang*. A novel sulfated arabinose-rich polysaccharide hydrogel from Chaetomorpha valida: preparation, properties and mechanisms. International Journal of Biological Macromolecules, 2025, 317: 144872. 原文链接: https://doi.org/10.1016/j.ijbiomac.2025.144872