《中国科大研制出新型柔性太阳能电池》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 王阳
  • 发布时间:2016-03-21
  • 中国科学技术大学教授熊宇杰课题组基于应用广泛的半导体硅材料,采用金属纳米结构的热电子注入方法,设计出一种可在近红外区域进行光电转换且具有力学柔性的太阳能电池。研究成果日前发表于《德国应用化学》。

      据了解,目前大多数太阳能电池都是针对可见光进行吸收,占太阳光52%的近红外光并没有得到高效利用。因此,增强近红外区域太阳光的吸收和利用成为一个关键科学问题,并对器件类型的设计提出了新要求。对此,该课题组基于先前研究的半导体—金属界面,创造性地将具有近红外光吸收性能的银纳米片与硅纳米线集成在一起,构筑了两种不同的光伏器件,近红外光区光电转换性能均得到了提高。在近红外光照下,银纳米片产生的热电子可以直接注入到硅半导体中,将该波段中的光电转换效率提高了59%。

      此外,熊宇杰课题组对商用硅片进行纳米化处理,并结合银纳米片的近红外光吸收性能,制造出具有力学柔性的近红外太阳能电池。

  • 原文来源:;http://www.cas.cn/cm/201603/t20160321_4550062.shtml
相关报告
  • 《“印刷术”突破柔性钙钛矿太阳能电池难题》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-05
    • 2017年12月29日,在中国科学院化学所绿色印刷重点实验室里,研究人员向《中国科学报》记者展示了他们最新制备的钙钛矿柔性太阳能电池,厚度和柔韧程度与一张杂志纸差不多。三年来,他们利用“印刷术”突破了柔性钙钛矿太阳能电池难题,有望为柔性可穿戴电子设备提供可靠电源。日前,这一成果在国际学术期刊《先进材料》(Adv. Mater.)上刊发。 这项研究通过纳米组装-印刷方式制备了钙钛矿的蜂巢状纳米支架,并在其内部搭建起“光学谐振腔”,这两项创新同时提高了柔性钙钛矿太阳能电池力学稳定性和光电转化率。 钙钛矿材料的新应用 “如果智能手表能配太阳能发电的表带,就不用天天充电了。”谈到开展该研究的初衷,论文第一作者、中国科学院化学所博士生胡笑添表示。钙钛矿发电效率的指数级增长和喷墨打印钙钛矿单晶材料的技术积累让他看到这一想法实现的可能。 钙钛矿光电转化效率高、价格低,是一种良好的太阳能电池材料。当不少实验室都在如何让钙钛矿代替硅电池上下功夫时,宋延林课题组看到了另一个应用方向——柔性太阳能发电材料。 科研人员对钙钛矿“又爱又恨”,其本身薄,基材厚度在一毫米以内,极具在人体上穿戴的可能;但材质脆,不耐弯折。为增加弯折性,胡笑添曾尝试用软性材料将钙钛矿上下包裹起来等多种方式,效果都不尽如人意。最终,他受到自然界最稳定力学结构蜂巢的启发,通过纳米组装-印刷方式制备出“蜂巢状纳米支架”可作为力学缓冲层,实现了柔性钙钛矿太阳能电池更高的力学稳定性。 同时,钙钛矿电池的光电转化率也是亟待解决的问题之一。由于技术限制,钙钛矿薄膜的面积越大,光电转换率越低。胡笑添则在器件内部搭起光学谐振腔,实现了50平方厘米面积上12.32%的光电转化率,在高效率电池在大面积可重复性上取得重大突破。 印刷制备提供技术积累 事实上,宋延林课题组能克服钙钛矿的性质作出突破离不开他们在绿色印刷上的技术积累。区别于传统图文材料的印刷内容,宋延林课题组提出了“大印刷”概念,可以把各种有功能的材料通过印刷的方式印到基材上。如今,科研人员的“印刷技能”已精确到纳米级别,能打印出“最细的线”和“最小的点”。去年,实验室还成功做出了可穿戴传感器,可识别复杂表情,并有望应用于脉搏监测、心脏监护和远程操控等领域。 “钙钛矿电池制备便是通过喷墨打印的方式将钙钛矿单晶材料打印到基材上。”宋延林说。 不仅如此,用于提高弯折性的蜂巢状纳米支架也通过印刷制备:“我们用墨水印刷的方式把蜂巢大小的球组装成单层紧密排列的形式,之后将蜂巢材料填充球与球的间隙中间,再将球冲刷掉,就形成了蜂巢状的网。” 大面积柔性材料未来可期 三年,2000多个器件,是宋延林带领课题组在这项研究中的尝试。“季节性的湿度变化对实验成功率影响都很大,跟撞运气一样,每个步骤都很细心很认真,但最后器件做出来性能就是不好。”宋延林回忆。在项目研究的三年中,胡笑添和课题组成员每天都要做至少三个样品出来测试数值。 胡笑添用镊子夹起一块指甲盖大小的玻璃板,一块深棕色的钙钛矿太阳能电池镶嵌其中。 “这是目前大部分实验室的研究方向,在极小的面积上实现较大的光电转换率,这块材料转换率达到20%左右,但面积太小,发电量也只有几毫瓦,应用价值还不够。”宋延林表示,科学研究要面向应用,钙钛矿太阳能电池不能一味追求高转化率而忽视可用性。目前,实验室的研究重点还放在大面积和柔性上,更大面积、更易弯折的钙钛矿电池研究成果有望明年发布。 尽管距离钙钛矿太阳能电池走出实验室还有许多难题,研究人员依然看好其未来应用。除了可穿戴设备,未来,钙钛矿电池还可能应用在衣服、汽车玻璃贴膜等地方,吸收太阳光,转化的电量给其他设备充电,既环保又实用。
  • 《模拟光合作用,浙大首次研制出转化率达10%的敏化太阳能电池》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-15
    • 随着能源矛盾的日益显现,寻找清洁、可持续的能源成为世界性课题。中国作为全球最大的太阳能电池生产国和需求国,正在发挥越来越重要的作用。   染料敏化太阳电池属于下一代光伏技术,作为色彩绚丽的透明电板在产业化方面已崭露头角。去除电解质中的挥发性组分并保证高效率和耐久性是获得户外器件长期应用的先决条件。   近日,浙江大学化学系王鹏教授课题组与瑞士联邦理工学院Michael Gr?tzel教授课题组合作,在光热稳定的染料敏化太阳能电池研究方面取得了重要进展。中外科学家基于理论计算和他们前期开发的模型染料C218,将氰基丙烯酸电子受体用三元苯并噻二唑-乙炔-苯甲酸替代,合成出具有更宽光谱响应的窄能隙有机染料C268,与宽能隙的染料SC4在二氧化钛表面共接枝,首次研制出强耐久且能量转换效率达10%的无挥发染料敏化太阳能电池。   新一代能源 模拟光合作用   自然界中植物的光合作用,是地球上最为有效的固定太阳光能的过程,染料敏化太阳电池就是模仿光合作用原理,研制出来的一种新型太阳电池。其由低成本的纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底几个关键元件组成。   如果知道树叶的结构,你会很好地理解染料敏化太阳电池。从结构上来看,染料敏化太阳电池就像人工制作的树叶,只是植物中的叶绿素被敏化剂所代替、而纳米多孔半导体薄膜结构则取代了树叶中的磷酸类酯膜。   无挥发性   目前高效的染料敏化电池的电解液都采用乙腈作为溶剂,这种溶剂沸点仅有81.6摄氏度,就像香水一样,极易挥发,严重影响太阳电池的使用寿命。   王鹏等人使用室温熔盐作为电解质,也就是在室温下,完全由离子组成的液体导电材料。这种熔盐没有蒸气压,且遇火不会燃烧。通过大量的理论计算和实验筛选,最终他们找到了粘度低、导电率高的盐作为电池的电解液,解决了因挥发性溶剂而带来的不稳定因素。   不易脱附   染料吸附在纳米半导体材料(通常为二氧化钛)的表面,就好比墙上的油漆,容易脱附。   王鹏课题组通过修饰染料的化学结构来降低染料极性,使得染料在电解液中溶解度大大降低,让染料像贝壳一样牢固附着在二氧化钛半导体这块石头上。这样的设计,可使太阳电池在室外工作到10到20年。   高效转化   之前同类的太阳能电池能量转化效率低的原因是吸收转化的太阳能少。   王鹏教授等人基于他们前期开发的模型染料C218,将氰基丙烯酸电子受体用三元苯并噻二唑-乙炔-苯甲酸替代,合成出具有更宽光谱响应的窄能隙有机染料C268。通过超快发光动力学测量发现,基于C268染料的器件具有更大短路光电流的起因在于该染料长的激发态寿命。在此基础上,作者将窄能隙的C268染料与宽能隙的染料SC4在二氧化钛表面共接枝,获得致密且牢固的混合自组装单分子层,首次实现了能量转换效率达10%的无挥发染料敏化太阳电池。该器件在85摄氏度老化1000小时后,能量转换效率的保有率仍在90%以上,展现出良好的应用前景。   染料敏化太阳电池具有诸多优势:它可作为玻璃幕墙、屋顶或窗户等,实现光伏建筑一体化,在低成本情况下实现建筑能源的自给,且无化学污染,整体性好,还可做成多种颜色,兼具美观;其弱光效应好,每天工作时间可以超过8小时,远高于硅晶体太阳能电池每天约4小时的工作时间,补足了其发光效率相对较低的不足。这种新型太阳能电池已经进入产业化,在奥地利的第二大城市格拉茨,当地科学城的地标性建筑的屋顶,装设了一千平方米的半透明太阳电池板;瑞士科技会展中心位于洛桑联邦理工学院校园北部,在彩色的染料敏化太阳电池的妆点下,建筑物既富科技感又不失华丽。“未来新型的染料敏化太阳能池将拥有更大的市场,比如就欧盟而言,提出到2025年新建建筑物能耗自供应能力占到25%。”王鹏说。这项研究得到了国家重大科学研究计划、国家自然科学基金等项目的资助。