《用DNA和锌指程序化装配核蛋白纳米颗粒,用于靶向蛋白传递》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-08
  • 随着细胞内药物靶点的增多和蛋白治疗的高效性,靶向输送毒性可忽略的活性蛋白成为精密医学领域的一个难题。本文介绍了一种利用DNA和锌指(ZnFs)进行靶向蛋白传递的核蛋白纳米粒子(NNPs)程序组装方法。两种不同序列特异性的ZnFs基因分别与靶向部分和蛋白质货物进行了融合。将具有多个ZnF结合序列的双链DNA嫁接到无机纳米颗粒上,然后与ZnF融合蛋白结合,生成大小分布均匀、稳定性高的NNPs组装。这种方法可以控制蛋白质在NNPs上的负载,提供高的胞质传递效率和目标特异性。基于其显著的抗肿瘤活性和靶向特异性,以及在异种移植小鼠模型中可忽略毒性,证明了该组装物作为一种多功能蛋白传递载体的实用性和潜力。

    ——文章发布于2018年11月06日

相关报告
  • 《地质地球所合成用于磁共振血管造影的磁性铁蛋白纳米颗粒》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 磁共振成像(MRI)因其具有高的空间分辨率和无创伤性已成为现代医学临床影像诊断中使用的一项重要技术。高品质磁共振造影剂是增强磁共振成像效果的关键环节。针对动脉粥样硬化、心肌梗死等心血管疾病诊断的磁共振血管成像术,特别是利用安全高效造影剂来增强磁共振血管成像是研究的热点问题之一。   MRI造影剂按照作用原理可分为纵向弛豫(T1)造影剂和横向弛豫(T2)造影剂。目前临床上使用的T1磁共振造影剂主要为钆的复合物(Gd-DTPA),即缩短T1而增强磁共振信号使图像变亮。但是基于钆的造影剂存在一定的缺陷,如引发肾源性系统性纤维化,在组织中沉积的风险以及较短的体内循环时间等。近年来,研究人员重视研发基于纳米尺寸铁氧化物的磁共振造影剂。相对而言,铁氧化物纳米颗粒具有良好的生物相容性,通常被用于磁共振成像的T2造影剂(缩短T2而增强磁共振信号使图像变暗),已在微小肿瘤MRI诊断中取得重要研究进展。能否把生物相容性高的铁氧化物纳米颗粒作为T1造影剂?换句话说,细颗粒铁氧化物颗粒(小于5 nm)是否有可能用作T1造影剂,从而为研发新型非钆类T1磁共振造影剂开辟新途径?   最近,中国科学院地质与地球物理研究所地球与行星物理重点实验室地磁场与生物圈演化学科组博士后蔡垚与合作导师潘永信等,利用基因工程异源表达的人H亚基空壳铁蛋白为反应模板,通过生物仿生矿化,合成了铁蛋白壳内含有赤铁矿/磁赤铁矿的磁性铁蛋白铁氧化物纳米颗粒,平均粒径分别为1.6 nm, 2.2 nm, 2.6 nm, 3.0 nm和4.7 nm。测试结果表明,平均内核粒径为2.2 nm的磁性铁蛋白具有最高的纵向弛豫率,达到0.86 mM-1s-1。通过在实验鼠上尾静脉注射这种磁性铁蛋白颗粒后进行磁共振血管成像,发现只需单次静脉注射该磁性铁蛋白纳米颗粒,就能在2小时内持续获得血管的高分辨图像(图1),明显优于钆造影剂,钆造影剂在单次静脉注射5分钟后磁共振信号会迅速减弱。磁性铁蛋白铁氧化物颗粒在实验鼠中的生物分布研究表明,肝、肾、脾是注射后的磁性铁蛋白主要分布脏器,且于注射后第二天这些脏器的铁含量就降低到正常值,不会引发过量铁负荷的风险;同时,组织病理检验表明实验鼠的主要脏器均无异常发生(图2)。   磁性铁蛋白纳米颗粒具有固有肿瘤生物靶向性、铁氧化物核粒径可控、生物相容性高等明显优势,具备研发高品质T1和T2磁共振造影剂的优良条件。这项研究也是基于铁蛋白壳多功能磁性纳米材料用于诊断和治疗一体化试剂研究的新进展。   研究成果发表于Nanoscale,并被选为封面文章。
  • 《纳米技术用于蛋白质传递》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2016-10-18
    • 基于蛋白质的疗法对各种人类疾病的治疗方面具有重大影响。但是,因为蛋白质本质上结构不稳定并且容易被酶降解,许多治疗蛋白质如酶、 生长因子、 激素和细胞因子因理化/生物和免疫原性稳定性差而被限制了使用。此外,蛋白质疗法用于细胞内靶向治疗时,他们的内化和生物活性可能因膜渗透性不足和内含体逃逸而受到限制。因此,有效的蛋白质传递方法对于提高疗效和扩大使用范围是至关重要的。本篇综述讨论了已上市和正在研究的蛋白质传递策略的优点和局限性,并重点概述了纳米技术平台用于蛋白质传递的最新研究进展。此外,我们还强调了纳米粒子介导的用于蛋白质传递的非侵入性给药方法 (例如,口腔、 鼻腔,肺和透皮贴剂路径) 。