《可视化揭示不同呼吸模式传播呼吸道传染病的风险》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-10
  • 在人类社会历经多次大流行疾病冲击的背景之下,对疾病传播的认知得到了显著的提升,特别是经历过新冠疫情以来。经由呼吸道释放的颗粒物及气流中可形成稳定悬浮的气溶胶体系被称为为人体呼出气溶胶。许多严重折磨人类社会的疾病,如新冠肺炎、肺结核、麻疹和流感,已被证明是通过呼吸排放后经空气传播的。人类呼吸道病毒感染会导致一系列呼吸道症状和疾病,在全球范围内导致高发病率、死亡率和重大经济损失。然而,医学界传统认为疾病流行只是靠飞沫(大于5微米)传播,这一思维惯性使得人们相对忽视了气溶胶(小于100微米的所有颗粒)传播的重要性,这也很大程度上归因于缺乏相关研究工具和实验观察。这些不确定性和一些传统错误的认识导致世界卫生组织在新冠疫情早期没能制定有效的防控策略。人体呼出气溶胶研究有助于了解呼出气溶胶的疾病传播潜力,进而为揭示呼吸道传染性疾病的发展规律以及预防控制策略的制定提供参考科学证据。尽管有文献报道人类呼出气溶胶颗粒的粒度分布,但不同呼吸模式的呼出气气流方向和疾病传播潜力仍不明朗。研究呼出气气流的可视化非常重要,特别在定量描述不同模式呼吸传播疾病的风险上。

    对于上述问题,北京大学环境科学与工程学院要茂盛教授课题组利用所搭建的红外成像装置,通过对人体呼出气溶胶中存在的CO2的流动形态的捕捉成像,实现了对于真实人类志愿者不同呼吸活动下呼出气溶胶的实时可视化,开展了针对于不同呼气模式下的呼出气流动力学和传播风险的相关研究工作。课题组研究了如干咳、深呼吸和大笑等呼吸模式的呼出气溶胶气流特征及其相应的口鼻活动间的差异,对不同呼出活动的相对传播风险进行了半定量。此外,对各种保护措施的作用机制进行了可视化研究。

    研究结果表明,人体呼出气溶胶气流特征在不同呼出活动和口鼻差异中存在着特征规律(图1、图2),体现在各呼出活动气流团形态各异,口部参与的活动其传播角度更加水平,口鼻的共同活动不是两者的简单叠加,而是相互干扰影响,增高了人体呼出气流运动的不稳定性和湍动程度。图像信息中灰度值水平的积分结果(图3)显示深呼吸活动的累积风险更高,口部参与的呼出活动保持稳定状态和较大面积范围的呼出气流能力更强,提示着口部活动较高的累积风险,而干咳等剧烈活动瞬间呼出的气流团颜色更深面积更大,瞬时风险更高。不同防护设备的作用(如图4),佩戴口罩可显著阻隔气流团的面对面水平传播,但有正面呼吸阀的口罩存在着呼出气流加压外溢的现象,在双人交流过程中双方的暴露易感区域及佩戴口罩所起到的防护作用的动态过程可参见后文所附视频链接1。桌面挡板的使用和可穿戴设备的开启,可将人体呼出气溶胶气流限制在一定空间范围。在这项工作中,课题组更多地关注不同呼吸模式之间的差异和特征,将不同呼吸模式下的气流走向可视化,真实理解呼出气气溶胶如何传播。这项工作的结果可以帮助我们更好地理解不同呼吸模式的传播特征,实验数据也为模型模拟的边界条件提供了重要信息。未来还需要更多的研究来更好地了解人类呼出的气溶胶及其对传染病传播的作用。

    研究结果以“Quantitatively visualizing airborne disease transmission risks of different exhalation activities through CO2 Imaging”为题发表在Environmental Science and Technology刊物上,并入选刊物内页封面。论文第一作者为北京大学环境科学与工程学院硕士生彭一娇,要茂盛为通讯作者。该项目得到国家自然科学基金委创新群体项目(22221004)、基金委集成项目(92043302)、国家相关人才计划(21725701)与广州实验室项目(EKPG21-02)的资助。

  • 原文来源:https://news.bioon.com/article/d8e4e707001b.html
相关报告
  • 《AJRCCM:研究揭示了COVID-19呼吸传播的关键细节》

    • 来源专题:食物与营养
    • 编译者:李晓妍
    • 发布时间:2020-08-13
    • 在一篇新发表的文章中,科学家对受SARS-CoV-2感染患者的飞沫如何通过空气传播进行了详尽的、以证据为基础的综述,并描述了医护专业人员如何保护自己。在篇文章中,田纳西大学医学院医学系主席兼临床事务副主任、教授Rajiv Dhand博士和拉什大学医学中心呼吸保健科心肺服务部副教授Jie Li博士一起描述了在打喷嚏和咳嗽过程中产生的含病毒水滴的类型、大小、在呼吸系统中沉积的部位、医学操作和设备如何传播这些飞沫,以及对卫生保健专业人员的风险。
  • 《Science子刊详解!新研究揭示汽车内气流如何影响COVID-19传播风险》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-11
    • 一项关于汽车乘客车厢内气流模式的新研究,为可能降低与他人一起乘车时的COVID-19传播风险提供了一些建议。这项研究由来自美国布朗大学和马萨诸塞大学的研究人员开展,他们使用计算机模型模拟了一辆小型汽车在各种车窗打开或关闭组合下的内部气流。模拟结果显示,打开车窗---越多车窗打开越好--产生的气流模式,大大降低了司机和单个乘客之间交换的空气颗粒浓度。他们发现,最大量开启汽车的通风系统并不能像打开几扇车窗那样好地让空气流通。相关研究结果于2020年12月4日在线发表在Science Advances期刊上,论文标题为“Airflows inside passenger cars and implications for airborne disease transmission”。 论文共同第一作者、布朗大学工程学院研究生Asimanshu Das说,“根据我们的计算机模拟,关着车窗开着空调或暖气开车绝对是最糟糕的情况。我们发现的最佳方案是让所有四扇车窗都打开,但即使有一两扇车窗打开,也比全部关闭要好得多。” Das与论文通讯作者兼论文共同第一作者、布朗大学前博士后研究员Varghese Mathai共同领导了这项研究。Mathai如今是马萨诸塞大学阿默斯特分校物理学助理教授。 这些研究人员强调,没有办法完全消除风险---当然,目前美国疾病控制中心(CDC)的指导意见指出,推迟旅行和待在家里是保护个人和社区健康的最佳方式。这项研究的目标只是研究汽车内气流的变化如何恶化或降低病原体传播的风险。 这项研究中使用的计算机模型模拟了一辆汽车,大致以丰田普锐斯为基础,汽车内有两个人:一名司机和一名乘客坐在司机对面的后座上。这些研究人员之所以选择这种座位安排,是因为它最大限度地增加了这两个人之间的物理距离(尽管仍然小于CDC推荐的6英尺)。这些模型模拟了以每小时50英里的速度移动的汽车周围和内部的气流,以及来自司机和乘客的气溶胶的移动和浓度。气溶胶是微小的颗粒,可以在空气中停留很长时间。它们被认为是SARS-CoV-2病毒传播的一种方式,特别是在封闭的空间里。 开车窗在降低气溶胶传播方面效果较好的部分原因是,它增加了汽车内的每小时换气次数(air change per hour, ACH),有助于降低气溶胶的整体浓度。但是,这些研究人员表示,ACH只是故事的一部分。这项研究表明,不同的开窗组合在汽车内产生了不同的气流,从而可以增加或减少对残留气溶胶的暴露。 由于空气流过汽车外部的方式,后车窗附近的气压往往高于前车窗的气压。因此,空气往往从后车窗进入车内,从前车窗排出。在所有车窗都打开的情况下,这种趋势会在车厢两侧形成两个或多或少的独立气流。鉴于模拟中的乘客都坐在车厢的对面,因此最终在司机和乘客之间传递的颗粒非常少。由于汽车内的平均气流是从后向前流动的,因此在这种情况下,司机的风险比乘客略高,但与其他任何情况相比,这两人经历的颗粒转移都大大降低。 对部分而非全部车窗关闭的情景进行的模拟得出了一些可能违反直觉的结果。例如,人们可能认为打开汽车上每个人旁边的车窗可能是减少暴露的最简单方法。这些模拟发现,虽然这种配置比完全没有车窗好,但与打开每个人对面的车窗相比,这会产生更高的暴露风险。 论文资深作者、布朗大学工程教授Kenny Breuer说,“当与汽车上每个人相对的车窗打开时,汽车上形成的一股气流从司机身后进入汽车,扫过乘客身后的车厢,然后从乘客侧的前车窗出去。这种模式有助于减少司机和乘客之间的交叉污染。” 这些研究人员表示,需要注意的是,气流调整并不能代替乘员在汽车内时都戴上口罩。而且这些研究结果仅限于可能含有病原体的残留气溶胶的潜在暴露。这项研究没有模拟较大的呼吸道飞沫或实际被这种病毒感染的风险。 不过,这些研究人员表示,这项研究为汽车乘客车厢内的空气循环模式提供了有价值的新见解,而这一点此前很少受到关注。 Breuer说,“这是我们所知道的第一项真正研究汽车内部微气候的研究。曾经有一些研究,探究了外部污染物进入汽车的程度,或者香烟烟雾在汽车内停留多长时间。但是,这是第一次有人详细研究气流模式。” 这项研究是由在布朗大学成立的COVID-19研究小组开展的,该研究小组旨在收集该校各方面的专业知识,以应对这次疫情的各个方面。这个研究小组是由这项研究的论文共同作者、布朗大学病理学与实验室医学副教授Jeffrey Bailey领导的。Bailey对这项研究进展如此之快印象深刻,Mathai建议在布朗大学的实验室研究因疫情暂停时进行计算机模拟。 Bailey说,“这真地是一个很好的例子,说明不同的学科如何快速地聚集在一起,并产生有价值的发现。我和Kenny简短地谈了一下这个想法,在三四天内,他的团队已经在做一些初步的测试。这就是在布朗大学这样的地方的伟大之处,人们渴望跨学科合作和工作。”