《Science:我国颜宁课题组从结构上揭示人Ptch1蛋白识别Shh机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-08-17
  • Hedgehog(Hh)通路对胚胎发生和组织再生是至关重要的。Hh信号是通过分泌的和脂质修饰的蛋白Hh结合到膜受体Patched(Ptch)上而被激活的。在缺乏Hh的情况下,Ptch通过一种未知的间接机制抑制下游的G蛋白偶联受体Smoothened(Smo)。

    Hh与Ptch的结合减轻了对Smo的抑制并且开启让Hh通路遭受转录激活的信号转导事件。Hh信号异常与出生缺陷或肿瘤发生有关。尽管进行了严密的研究,Hh、Ptch和Smo之间相互作用的分子基础仍是不清楚的,而且Ptch和Hh之间识别的结构基础还有待阐明。

    经预测长1447个氨基酸残基的人Ptch1蛋白含有12个跨膜区段(TM),并且与细菌RND家族转运蛋白(resistance-nodulation-division family transporter, RND家族转运蛋白)存在着结构类似性。Ptch1的跨膜区段2(TM2)至TM6构成固醇敏感多肽区(sterol-sensing domain, SSD)。人们已在几种参与固醇转运和代谢的蛋白中发现了SSD。这些含有SSD的蛋白的潜在固醇结合或转运活性的分子机制仍然是不清楚的。

    在一项新的研究中,为了获得适合于结构研究的样品,来自中国清华大学的研究人员基于序列保守性和功能表征获得几种人Ptch1的构建体。最终,在人胚胎肾293F细胞中瞬时表达的含有氨基酸残基1~1305的人Ptch1截短版本在亲和层析纯化和尺寸排阻层析纯化后表现出足够的表达水平和良好的溶液行为。他们还观察了Ptch1的寡聚体状态和单体状态。Ptch1的单体形式可适用于单粒子低温电子显微镜分析,这是因为它在低温条件下具有优异的性能。相关研究结果发表在2018年8月10日的Science期刊上,论文标题为“Structural basis for the recognition of Sonic Hedgehog by human Patched1”。论文通信作者为清华大学医学院教授颜宁(Nieng Yan)博士。

    在三种哺乳动物Hh同源物Sonic(Shh)、Desert(Dhh)和Indian(Ihh)中,Shh一直是功能和机制研究的原型。在大肠杆菌中表达和纯化的人Shh的N-端结构域(ShhN, 氨基酸残基24~197)能够在胆固醇琥珀酸单酯(cholesteryl hemisuccinate, CHS)的存在下与去污剂溶解的Ptch1蛋白形成一种稳定的复合物。

    颜宁课题组分别在3.9埃分辨率下和在3.6埃分辨率下解析出人Ptch1单独时以及它与ShhN结合在一起时的低温电镜结构。他们识别出两个相互作用的胞外结构域ECD1和ECD2,以及12个跨膜区段(TM1~12)。一旦ShhN结合,ECD1和ECD2向彼此移动,而且它们一起构成ShhN的停靠位点。颜宁课题组对ShhN与Ptch1之间的详细识别进行了分析和生化验证。

    在具有或不具有ShhN的Ptch1中观察到两个与CHS相一致的类固醇密度(steroid-shaped density):一个在由这两个胞外结构域包围的口袋中,另一个在SSD的膜面向的腔中。基于结构的生化分析揭示出ShhN和Ptch1之间的类固醇依赖性相互作用。相比于野生型Ptch1,类固醇结合缺陷型Ptch1突变体的结构表现出显著的构象重排。

    总之,人Ptch1单独时及其与ShhN结合在一起时的结构揭示出Ptch1和ShhN之间识别的分子基础。在Ptch1中鉴定出两个类固醇结合位点为在未来研究Hh信号建立了重要的框架,并对含有SSD蛋白的固醇感知提供了关键见解。

  • 原文来源:http://science.sciencemag.org/content/361/6402/eaas8935
相关报告
  • 《Science | LIS1组装动力蛋白-动力蛋白复合体的分子机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-03
    • 2024年3月29日,英国剑桥大学的研究人员在Science上发表了题为Molecular mechanism of dynein-dynactin complex assembly by LIS1的文章。 细胞质动力蛋白是一种对细胞组织和分裂至关重要的微管马达。它作为一个约 4 兆碳原子的复合物发挥作用,该复合物包含其辅助因子动态蛋白和一个货物特异性线圈适配体。然而,目前仍不清楚动力蛋白和动力牵引蛋白如何识别不同的适配体,它们在复合物形成过程中如何相互作用,以及诸如ligencephaly-1(LIS1)蛋白(LIS1)等关键调控因子的作用。 在这项研究中,研究人员测定了微管上的动力蛋白-突触蛋白与 LIS1 和溶酶体适配体 JIP3 的冷冻电镜结构。该结构揭示了动力蛋白激活过程中发生相互作用的分子基础。研究人员展示了 JIP3 如何在非典型结构的情况下激活动力蛋白。意想不到的是,LIS1 与动力蛋白的 p150 亚基结合,将其沿着动力蛋白的长度拴住。该研究的数据表明,LIS1 和 p150 限制了动力蛋白-动力蛋白,以确保复合物的有效形成。
  • 《Science丨揭示真核生物焦亡蛋白GSDM非酶切依赖的全新激活机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-29
    • 2024年4月25日,中国科学院生物物理研究所丁璟珒课题组和北京生命科学研究所邵峰团队合作,在 Science 期刊发表了题为Cleavage-independent activation of ancient eukaryotic gasdermins and structural mechanisms 的研究论文,该研究揭示了两种来源于低等真核生物的GSDM蛋白通过非蛋白酶切割的新颖方式激活的分子机制。 研究人员首先通过序列同源性分析发现,最原始的多细胞生物丝盘虫(Trichoplax adhaerens)的基因组编码了一个只含有膜打孔结构域的GSDM同源蛋白(TrichoGSDM)。通过重组表达和纯化鉴定,发现TrichoGSDM蛋白同时存在单体和二聚体两种形式,其中单体蛋白具有在脂质体上打孔的活性,TrichoGSDM二聚体则不能上膜打孔。研究人员进一步解析了TrichoGSDM二聚体高分辨率的晶体结构,意外地发现TrichoGSDM二聚体是由两个单体蛋白通过三对分子间二硫键交联而成。在体外利用还原剂处理TrichoGSDM二聚体,或者突变参与二硫键形成的Cys都可以获得均一的单体蛋白,并展示出强烈的膜打孔活性,这表明二硫键连接的二聚体代表了TrichoGSDM蛋白的非激活状态,二聚体向还原态的单体转换可能是TrichoGSDM蛋白潜在的激活机制。细胞质中的谷胱甘肽(glutathione,GSH)和硫氧还蛋白(thioredoxin,TRX)是两种重要的抗氧化系统,可以清除胞质中有害的活性氧或者蛋白质错误氧化形成的二硫键,维持胞质的还原环境。 研究人员利用胞质生理浓度的GSH或丝盘虫的TRX蛋白处理TrichoGSDM二聚体,都可以将二聚体还原、释放单体的膜打孔活性,在细菌中诱导表达TrichoGSDM具有和哺乳动物GSDM蛋白N端结构域相似的抑菌活性,说明细菌胞质的还原环境有利于TrichoGSDM维持在活化的单体状态,通过在细菌膜上打孔抑制细菌生长。研究人员还成功解析了TrichoGSDM在脂质体膜上形成的分子孔道高分辨率的冷冻电镜结构,发现TrichoGSDM由44个单体形成了目前已知的真核生物最大的GSDM孔道。通过结构分析揭示了TrichoGSDM识别酸性磷脂、发生构象变化并寡聚组装成孔的结构基础。这些研究阐明了TrichoGSDM从分子间二硫键介导的二聚体自抑制状态,通过还原二硫键活化成具有打孔活性的单体状态,并进一步在膜上寡聚打孔介导细胞死亡的分子机制,这种新颖的激活机制在GSDM蛋白中是首次发现的。 TrichoGSDM的发现激发了研究人员继续探寻只含有膜打孔结构域的GSDM蛋白的研究兴趣。最近,在丝状真菌粗糙脉孢菌(Neurospora crassa)中发现的融合致死基因rcd-1,在不同菌株中的等位基因可编码RCD-1-1和RCD-1-2两种同源蛋白,当不同菌株发生细胞融合时,两种RCD-1蛋白介导了同种异体识别(allorecognition)引发的细胞死亡。研究人员通过解析RCD-1-1和RCD-1-2的晶体结构,发现两种RCD-1蛋白与哺乳动物GSDM的膜打孔结构域具有相似的结构特征,但二者缺少发挥自抑制功能的结构元件。单独的RCD-1-1或RCD-1-2在溶液中呈现单体状态,通过识别酸性磷脂结合在脂质体膜上,却无法寡聚打孔,因而没有细胞毒性。而两种RCD-1蛋白在大肠杆菌、酿酒酵母或HeLa细胞等多种细胞系统中共表达时,会引发强烈的裂解性细胞死亡。 通过解析共孵育的RCD-1-1和RCD-1-2蛋白在脂质体膜上形成的分子孔道冷冻电镜三维结构,发现两种蛋白通过交替排布的异源寡聚组装方式形成已知的最小GSDM孔道。分析RCD-1分子孔道中两种蛋白的作用方式发现,每一个RCD-1-1分子都与两侧相邻的RCD-1-2分子相互作用,但两侧的互作方式并不等效,拥有更强分子间极性作用的一侧主导了RCD-1异源二聚体的形成,而另一侧的分子间相互作用驱动了以异源二聚体为单元进一步寡聚成孔。将RCD-1-1和RCD-1-2蛋白与脂质体共孵育,或分别结合脂质体后再进行共孵育,都可以通过两种蛋白的分子间识别激活在脂质体膜上的打孔活性,而将异源二聚体识别界面的关键残基突变,在分别表达两种蛋白的不同交配型酵母细胞融合或不同粗糙脉孢菌菌株的孢子融合时,都阻断了RCD-1蛋白的分子间识别,因而不能激活膜打孔活性并引起裂解性细胞死亡。这些研究揭示了具有膜结合特性的RCD-1蛋白单独存在时处在未激活的静息状态,细胞融合导致两种蛋白相遇,通过分子间特异性识别来激活异源二聚体组装,并进一步在细胞膜上寡聚成孔,执行细胞死亡的功能。 上述研究打破了一直以来认为GSDM蛋白需要蛋白酶切割打开自抑制、激活膜打孔活性的传统认识,揭示了低等真核生物中两类只含有膜打孔结构域的GSDM蛋白,分别通过氧化还原调控或配对的分子间相互作用来释放膜打孔活性的全新激活机制,拓展了对GSDM蛋白进化和功能多样性的机制理解。多种不同的激活机制表明GSDM蛋白可以响应更广泛的生物学信号,参与更丰富的生命活动过程。同时,这种不依赖酶切的GSDM蛋白具有被开发成诱导细胞死亡新型工具的潜力,可以助力细胞焦亡相关的基础和转化研究。