《宁波材料所在制备高性能高丰度稀土基永磁体研究中获进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 发布时间:2017-03-31
  • 宁波材料所在制备高性能高丰度稀土基永磁体研究中获进展. 2017-03-30 08:48:58 编辑: 小 中 大 打印 关闭 . 稀土2:14:1型永磁体因其高矫顽力、高剩磁及高磁能积的特点,被广泛应用于电子通讯、交通运输、军事装备等领域,并在国民的生产生活中扮演着越来越重要的角色,被冠以磁王的称号。近几年来,出于对稀土资源综合利用和降低稀土永磁企业生产成本的角度考量,对于高丰度稀土元素Ce的应用越来越引人关注,但高丰度Ce基磁体因其主相内禀磁性能低,微观结构差,综合磁性能普遍不尽如人意。中国科学院宁波材料技术与工程研究所稀土磁性功能材料实验室通过晶界调控的方式在制备高性能高丰度稀土基永磁体的工作中取得了进展。      该实验室通过引入低熔点Nd-Fe合金粉末,采用晶界添加的方式控制稀土Nd元素分布于磁体晶界处,三角晶界处所形成的相经选区电子衍射标定(如图1),表明形成的为RE6Fe13Cu1相,而与初始Ce基磁体存在于三角晶界处的REFe2相相比,新形成的相具有更低的熔化温度(702K),因而在对磁体进行回火热处理时,晶界处流动性更强更易于在主相...

相关报告
  • 《宁波材料所高性能钐钴永磁材料及关键制备技术取得研究进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-03-16
    • 2:17型钐钴永磁材料具有良好的磁性能和优异的温度稳定性,被广泛应用于航空航天、雷达通讯、轨道交通和5G通讯等重要领域。随着我国高端科技领域的飞速发展,对2:17型钐钴永磁材料磁性能提出了更高的要求。在2020年发表的中国工程院“稀土功能材料2035发展战略研究”中,明确将高性能钐钴列为未来需要重点发展的方向。高铁含量2:17型钐钴永磁材料是发展高性能钐钴磁体的优异载体,但胞状组织结构复杂且演变过程缺乏足够认识,磁性能与组织结构依赖关系的认识依然不充分,对精细结构的调控缺乏科学依据与有效手段,这对高性能钐钴磁体的开发和产业化构成了巨大的挑战。   认识高铁含量钐钴磁体的胞状组织结构演变过程是突破性能瓶颈的关键理论基础,中国科学院宁波材料技术与工程研究所稀土永磁团队重点针对胞状组织的固溶前驱体,通过不同热处理阶段显微结构的连续精细表征,在固溶体物相结构、胞状结构生长行为和铜元素偏聚扩散方面取得新的发现(Acta Materialia 200 (2020) 883–892)。研究在高铁含量2:17型钐钴固溶体1:7H主相中发现大量与基面平行的短条带状纳米尺度短程有序化微区,这些微区是由以2:17H和2:17R微孪晶结构为基础的2:17多型变体,且以极高的密度弥散而均匀地分布在1:7H基体中。等温时效初始阶段,固溶体中的纳米短程有序化微区在1:7H基体相中沿垂直于c轴和平行于c轴方向快速生长,在垂直于c轴方向生长相交形成反相畴界,反相畴界使胞壁相沿2:17R相的两个锥面析出,基面堆垛顺序相反的有序化微区在平行于c轴方向上生长相交形成高密度2:17R相微孪晶。微孪晶以三个基面原子层、总柏氏矢量等于零的微台阶在1:5H/2:17R相界面上连续形核并滑动的方式完成有序化相变,形成胞状结构雏形。进一步研究发现,等温时效初期2:17R微孪晶的有序化转变过程是促进2:17型钐钴磁体铜元素偏聚扩散的新驱动力。   基于2:17R微孪晶有序化是促进铜元素偏聚动力的认识,团队利用双合金工艺在2:17型钐钴基体中掺杂轻稀土氧化物的方法,成功实现磁体胞状组织结构及铜元素分布调控。研究发现掺杂的轻稀土氧化物能够在其周边区域诱导形成高密度2:17H微孪晶结构。经时效处理后,氧化物周边区域形成了较大的胞状结构,且胞壁相铜元素含量显著高于远离氧化物区域。胞壁相高的铜含量使得氧化物周边胞状结构具有更强的磁畴壁钉扎作用,使磁体的矫顽力大幅提升(授权专利ZL201711260994.0,Journal of Alloys and Compounds 849 (2020) 156589)。利用该技术,团队开发出系列高性能高稳定性钐钴磁体,并在5G高频微波器件、高精密惯导系统等尖端装备中获得应用。   相关研究工作为进一步推动高性能钐钴永磁材料的开发提供了新的理论基础,开发的矫顽力调控新技术有望进一步挖掘钐钴永磁材料的性能潜力。研究得到了宁波市新材料2025重大专项(2020Z037)、浙江省重点研发计划(2021C01191)等项目的支持,以及宁波材料所公共技术中心表征分析工作的支持。
  • 《宁波材料所在晶界调控提高钕铁硼热变形磁体磁性能研究方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-04-24
    • 钕铁硼热变形磁体由于具有磁能密度高、稀土用量少、制备流程短、易于实现近终成型等优点,在变频家电、绿色交通、智能制造等领域具有广阔的市场前景,巨大的应用需求也反向推动了提高热变形磁体磁性能的研究。然而,热变形磁体内颗粒界面处存在的无取向粗晶区对剩磁和矫顽力都具有严重的负面影响。对此,中国科学院宁波材料技术与工程研究所稀土永磁团队先后开发出添加纳米WC高熔点相和预扩散Pr-Cu低熔点相两种晶界调控方法,通过有效抑制界面粗晶区大幅提高了磁体的矫顽力,同时揭示了界面调控抑制粗晶区形成的机理。 通过对比研究添加WC纳米颗粒前后热变形磁体的微观结构和反磁化过程,研究人员发现,未添加WC时,磁体内条带状快淬颗粒界面处存在低熔点富钕相的大量偏聚,热变形时液态的富钕相缓冲了作用于颗粒界面处晶粒的压应力,从而导致界面处晶粒发生随机长大形成无取向的粗晶区;而添加的WC高熔点相在热变形时仍然为“硬”的固态,并且分布于颗粒界面处(图1a),它能够在颗粒界面处产生局域压应力,从而引发附近的Nd2Fe14B晶粒发生(00l)晶面择优取向生长,进而在颗粒界面处形成片状纳米晶(图1b)。相比于无取向的微米粗晶粒,片状纳米晶取向良好且难以发生反向磁化,因而能够大幅提高热变形磁体的矫顽力,同时剩磁略有增长(图1c)。相关工作发表在Acta Materialia (2019, 167: 103-111)上。 预扩散Pr-Cu低熔点相的方法能够解决传统晶界扩散时出现的Pr-Cu相在界面处偏聚严重的问题,使Pr-Cu在磁体内分布更加均匀,实现非磁性Pr-Cu相对Nd2Fe14B晶粒的包覆,从而有效减弱Nd2Fe14B晶粒间的磁耦合作用,提高磁体矫顽力(图2a);同时颗粒界面处均匀分布的Pr-Cu相能够更好地隔离晶粒,阻止晶粒间的融合生长,进而抑制界面处晶粒的过度长大和粗晶区的形成。相比未进行预扩散的磁体(图2b),界面粗大晶粒数量显著减少,粗晶区宽度也明显减小(图2c)。相关工作发表在Acta Materialia (2019, 174: 332-341)上。 上述研究成果不仅丰富了热变形磁体的晶界调控理论,也有助于进一步推动提升热变形磁体性能的技术研发。相关工作得到了国家重点研发计划项目(2016YFB0700902)、国家自然科学基金(51671207)和浙江省基础公益研究计划项目(LGG18E010002、LGG19E010001)等的支持。 图1 添加高熔点WC纳米颗粒抑制粗晶区形成的机理图及效果 图2 预扩散Pr-Cu低熔点合金前后热变形磁体的矫顽力和微观结构照片