《宁波材料所在晶界调控提高钕铁硼热变形磁体磁性能研究方面取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-04-24
  • 钕铁硼热变形磁体由于具有磁能密度高、稀土用量少、制备流程短、易于实现近终成型等优点,在变频家电、绿色交通、智能制造等领域具有广阔的市场前景,巨大的应用需求也反向推动了提高热变形磁体磁性能的研究。然而,热变形磁体内颗粒界面处存在的无取向粗晶区对剩磁和矫顽力都具有严重的负面影响。对此,中国科学院宁波材料技术与工程研究所稀土永磁团队先后开发出添加纳米WC高熔点相和预扩散Pr-Cu低熔点相两种晶界调控方法,通过有效抑制界面粗晶区大幅提高了磁体的矫顽力,同时揭示了界面调控抑制粗晶区形成的机理。

    通过对比研究添加WC纳米颗粒前后热变形磁体的微观结构和反磁化过程,研究人员发现,未添加WC时,磁体内条带状快淬颗粒界面处存在低熔点富钕相的大量偏聚,热变形时液态的富钕相缓冲了作用于颗粒界面处晶粒的压应力,从而导致界面处晶粒发生随机长大形成无取向的粗晶区;而添加的WC高熔点相在热变形时仍然为“硬”的固态,并且分布于颗粒界面处(图1a),它能够在颗粒界面处产生局域压应力,从而引发附近的Nd2Fe14B晶粒发生(00l)晶面择优取向生长,进而在颗粒界面处形成片状纳米晶(图1b)。相比于无取向的微米粗晶粒,片状纳米晶取向良好且难以发生反向磁化,因而能够大幅提高热变形磁体的矫顽力,同时剩磁略有增长(图1c)。相关工作发表在Acta Materialia (2019, 167: 103-111)上。

    预扩散Pr-Cu低熔点相的方法能够解决传统晶界扩散时出现的Pr-Cu相在界面处偏聚严重的问题,使Pr-Cu在磁体内分布更加均匀,实现非磁性Pr-Cu相对Nd2Fe14B晶粒的包覆,从而有效减弱Nd2Fe14B晶粒间的磁耦合作用,提高磁体矫顽力(图2a);同时颗粒界面处均匀分布的Pr-Cu相能够更好地隔离晶粒,阻止晶粒间的融合生长,进而抑制界面处晶粒的过度长大和粗晶区的形成。相比未进行预扩散的磁体(图2b),界面粗大晶粒数量显著减少,粗晶区宽度也明显减小(图2c)。相关工作发表在Acta Materialia (2019, 174: 332-341)上。

    上述研究成果不仅丰富了热变形磁体的晶界调控理论,也有助于进一步推动提升热变形磁体性能的技术研发。相关工作得到了国家重点研发计划项目(2016YFB0700902)、国家自然科学基金(51671207)和浙江省基础公益研究计划项目(LGG18E010002、LGG19E010001)等的支持。

    图1 添加高熔点WC纳米颗粒抑制粗晶区形成的机理图及效果

    图2 预扩散Pr-Cu低熔点合金前后热变形磁体的矫顽力和微观结构照片

相关报告
  • 《宁波材料所在晶界调控提高钕铁硼热变形磁体磁性能研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-20
    • 钕铁硼热变形磁体由于具有磁能密度高、稀土用量少、制备流程短、易于实现近终成型等优点,在变频家电、绿色交通、智能制造等领域具有广阔的市场前景,巨大的应用需求也反向推动了提高热变形磁体磁性能的研究。然而,热变形磁体内颗粒界面处存在的无取向粗晶区对剩磁和矫顽力都具有严重的负面影响。对此,中国科学院宁波材料技术与工程研究所稀土永磁团队先后开发出添加纳米WC高熔点相和预扩散Pr-Cu低熔点相两种晶界调控方法,通过有效抑制界面粗晶区大幅提高了磁体的矫顽力,同时揭示了界面调控抑制粗晶区形成的机理。 通过对比研究添加WC纳米颗粒前后热变形磁体的微观结构和反磁化过程,研究人员发现,未添加WC时,磁体内条带状快淬颗粒界面处存在低熔点富钕相的大量偏聚,热变形时液态的富钕相缓冲了作用于颗粒界面处晶粒的压应力,从而导致界面处晶粒发生随机长大形成无取向的粗晶区;而添加的WC高熔点相在热变形时仍然为“硬”的固态,并且分布于颗粒界面处(图1a),它能够在颗粒界面处产生局域压应力,从而引发附近的Nd2Fe14B晶粒发生(00l)晶面择优取向生长,进而在颗粒界面处形成片状纳米晶(图1b)。相比于无取向的微米粗晶粒,片状纳米晶取向良好且难以发生反向磁化,因而能够大幅提高热变形磁体的矫顽力,同时剩磁略有增长(图1c)。相关工作发表在Acta Materialia (2019, 167: 103-111)上。 预扩散Pr-Cu低熔点相的方法能够解决传统晶界扩散时出现的Pr-Cu相在界面处偏聚严重的问题,使Pr-Cu在磁体内分布更加均匀,实现非磁性Pr-Cu相对Nd2Fe14B晶粒的包覆,从而有效减弱Nd2Fe14B晶粒间的磁耦合作用,提高磁体矫顽力(图2a);同时颗粒界面处均匀分布的Pr-Cu相能够更好地隔离晶粒,阻止晶粒间的融合生长,进而抑制界面处晶粒的过度长大和粗晶区的形成。相比未进行预扩散的磁体(图2b),界面粗大晶粒数量显著减少,粗晶区宽度也明显减小(图2c)。相关工作发表在Acta Materialia (2019, 174: 332-341)上。 上述研究成果不仅丰富了热变形磁体的晶界调控理论,也有助于进一步推动提升热变形磁体性能的技术研发。相关工作得到了国家重点研发计划项目(2016YFB0700902)、国家自然科学基金(51671207)和浙江省基础公益研究计划项目(LGG18E010002、LGG19E010001)等的支持。
  • 《宁波材料所在热电材料综合性能优化方面取得系列进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-04-03
    • 热电转换技术利用半导体内部的载流子输运能够实现热能和电能之间的直接相互转换。热电器件具有体积小、无移动部件、无噪音、可靠性高和使用寿命长等优点,在特殊电源、余热发电、以及便携精密制冷等领域具有广泛而重要的应用。围绕碲化铋等层状结构热电材料以及新型IV-VI族化合物,中国科学院宁波材料技术与工程研究所光电功能材料与器件团队通过理论与实验紧密结合,在综合性能优化方面开展了一系列具有特色和成效的研究工作。 研究团队在碲化铋中添加硬度较高的Ge0.5Mn0.5Te,并通过区熔和热压两种工艺相结合,所获得的复合材料兼具良好的力学性能和热电性能,从而使其更有利于微型热电器件应用(J. Mater. Chem. A 2019, 7: 9241)。在层状Mg基Zintl相热电材料方面,研究团队首先从理论角度阐述了这类材料的共性局域成建特征和多能谷调控机理(J. Mater. Chem. A 2019, 7: 8922),并与美国休斯顿大学任志锋教授团队合作实现了SmMg2Bi2高熵热电材料的性能优化(J. Mater. Chem. A 2020, doi: 10.1039/c9ta13224d)。在新型IV-VI族化合物方面,研究团队系统阐述了掺杂阳离子轨道能级和结构因子对轻重价带的协同调控,与日本国立材料研究所Mori教授团队合作实现了GeTe热电优值的显著提升(Mater. Today Phys. 2019, 9, 100094)。 最近,针对具有层状结构的SnSe热电材料,该研究团队制备了PbBr2掺杂SnSe0.95单晶,并结合测试表征和第一性原理计算,揭示了晶格常数增大引起的费米面演变对热电性能的调控规律。实验研究发现,随着PbBr2的含量增加,晶格常数a逐渐增大,材料电输运性能显著提升;当PbBr2浓度达到3%时,载流子迁移率和电导率却急剧降低。费米面动力学研究表明,随着晶格常数a增大,导带低费米面逐渐变小,电子云交叠也随之减小,当电子云交叠减小到一定程度就会导致迁移率骤降;另一方面Γ点费米面逐渐增大,增强的谷间散射也导致迁移率降低。为论证费米面动力学调控机制,研究人员基于3%PbBr2掺杂样品进一步设计了Ge掺杂实验,表明适当缩小晶格常数a可以提高载流子迁移率,并将最优化ZT值由0.6提升至1.7。该工作以“Fermi-surface dynamics and high thermoelectric performance along the out-of-plane direction in n-type SnSe crystals”为题发表在Energy Environ. Sci. 2020, 13: 616。 该系列研究得到了国家自然科学基金(51872301,21875273和51702334)、浙江省相关人才计划(LR16E020001)、浙江省自然科学基金(LY18A040008和LY18E020017)和中国科学院青年创新促进会(2018337和2019298)等项目的支持。 图 PbBr2掺杂SnSe0.95费米面动力学及热电性能优化