《最新Science:单晶金刚石中跨音速位错运动的实验证据》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自材料牛

    【导读】

    由外部应力引起的材料内部位错的运动与材料的机械性能及其变形动力学有关。当韧性材料受到应力时,材料内部的位错会移动以局部适应该力,从而产生塑性。脆性材料中通常不存在金属常见的延展性,如金刚石。但是,即使是脆性材料也可以在某些极端条件下表现出延展性,例如冲击引起的高应变率变形。虽然位错介导的塑性的基本机制有时与材料响应外部应力时的应变速率不变,但许多研究已经观察到具有高速率敏感性的情况。在最高应变速率下,位错在变形过程中以接近材料声速的速度移动。迄今为止,在实际晶体中的跨音速或超音速位错运动尚未在实验中观察到。唯一报道的实验证据表明,在等离子体晶体中,位错的移动速度比最慢的极限速度快。相比之下,许多理论和分子动力学(MD)模拟研究预测了跨音速甚至超音速位错运动的存在,表明极限速度不应该是位错运动的上限。虽然在如此高的速度下产生位错对MD模拟来说相对简单,但测量位错的实验还无法达到这种快速驱动的条件。到目前为止,还没有人能够直接测量这些位错通过材料传播的速度。当应变率>107 s?1时,激波压缩技术为研究高速位错提供了一个独特的系统,因为激波前的能量不连续可以产生比极限速度更快的位错。

    【成果掠影】

    线缺陷(位错)的运动已被研究了60多年,但其运动的最大速度尚未得到解决。最近的模型和原子模拟预测在跨声速和亚声速之间存在位错运动的极限速度。到目前为止,还没有人能够直接测量这些位错通过材料传播的速度。近日,大阪大学、日本同步辐射研究所、美国斯坦福大学材料科学与工程系、SLAC国家加速器实验室Kento Katagiri团队使用飞秒X射线摄影技术来跟踪冲击压缩单晶金刚石中的超快位错运动。通过观察叠加断层的扩展速度比金刚石最慢的声波速度还要快,展示了其前缘部分位错跨声速移动的证据。了解晶体中位错迁移率的上限对于准确建模、预测和控制极端条件下材料的力学性能至关重要。相关研究成果以“Transonic dislocation propagation in diamond”为题发表在国际著名期刊Science 上。

    【核心创新点】

    首次通过实验证据直接测量位错通过材料传播的速度,利用飞秒X射线摄影证明了位错在单晶金刚石中的传播速度比声波的速度更快。


    【成果启示】

    使用原位X射线摄影显示了金刚石中跨音速位错运动的实验证据。微观位错运动发射的辐射会影响宏观弹塑性变形动力学。该实验结果显示跨音速位错运动为改进模型以深入了解这些极端条件下的超快变形行为提供了关键的新机会。在最高应变速率下的新改进模型将对许多领域产生显著影响,包括结构材料的超快断裂、地震破裂的预测和分析、精密制造过程和电化学应用中的功能。

    文献链接:https://www.science.org/doi/full/10.1126/science.adh5563


  • 原文来源:http://www.cailiaoniu.com/254889.html
相关报告
  • 《大尺寸金刚石晶圆复制技术:现状与未来》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-02-07
    • 在半导体技术飞速发展的今天,大尺寸晶圆的高效制备成为推动行业进步的关键因素。而在众多半导体材料中,金刚石凭借其超宽禁带、高击穿电场、高热导率等优异电学性质,被视为 “终极半导体”,在电真空器件、高频高功率固态电子器件领域极具应用潜力。 然而,金刚石的高硬度和生长速率低、尺寸小等问题,限制了其在大尺寸晶圆制备中的应用。今天,我们就一同深入探究大尺寸金刚石晶圆复制技术的发展现状与未来趋势。常规半导体复制技术大盘点在半导体领域,晶圆复制通常借助同质外延生长后切割,或基于异质衬底进行异质外延这两种方式实现批量生产。而半导体切割技术作为晶圆复制的关键环节,对晶圆及衬底表面质量影响重大。目前,常见的半导体切割技术各有千秋: 线切割技术:分为游离磨料多线切割和固结金刚石多线切割。前者利用多根高速运动的切割线带动切割液中的磨料切削材料,虽可多片同时生产,但材料损耗高达 40%,且切割液回收困难、污染环境;后者则是通过固结在切割线上的金刚石磨粒进行切割,切片效率高、污染小,却容易损伤晶圆。 切割原理示意图 Smart-Cut 技术:该技术通过向材料注入大剂量氢离子形成受损层,再经晶圆键合、退火、抛光等步骤获取晶圆。它能生产多种异质晶圆,对晶圆损伤小、生产的晶圆质量高,但对材料和实验环境要求苛刻,生产稳定性欠佳。 激光隐形切割技术:利用可透射波长激光在材料内部聚焦形成改质层,随后使材料分离并加工表面。其加工速度快、精度高、稳定性好,几乎无材料损耗,能有效解决普通激光切割的诸多问题,在大尺寸金刚石切割领域颇具发展潜力。金刚石晶圆复制技术的探索之路目前,金刚石晶圆制备主要有基于异质衬底的异质外延生长和基于拼接等方法的同质外延生长这两种途径。而基于同质外延的金刚石晶圆复制技术多借助离子注入技术,此外,激光隐形切割技术在金刚石复制方面也有了初步成果。这两种复制技术有效规避了传统激光切割高损耗的问题7。 离子注入剥离金刚石:1992 年,Parikh 等人首次提出金刚石剥离技术,通过离子注入、退火和刻蚀等处理,成功完成了小尺寸金刚石的剥离。此后,该技术不断改进,如调整外延生长厚度、采用电化学刻蚀等实现定向剥离。离子注入时,离子在金刚石晶体中形成受损层的过程遵循射程理论。研究发现,存在临界剂量和缺陷密度阈值,达到这些条件,受损层才能形成可刻蚀的石墨层实现剥离。目前,离子注入剥离技术在大尺寸、超薄金刚石制备方面取得了一定进展,还能降低衬底表面粗糙度,实现衬底重复利用。但该技术需要高能离子注入,设备成本高、注入面积受限,产业化推广面临挑战。 离子注入剥离金刚石流程图 激光剥离金刚石:原理与激光隐形切割半导体类似,利用飞秒激光在金刚石内部形成石墨改质层,再通过退火、电化学刻蚀等步骤实现剥离。近年来,飞秒激光诱导金刚石石墨化的研究逐渐兴起,已有研究成功在金刚石内部制造出石墨微结构,并实现了单晶金刚石的剥离。国内北京科技大学团队利用飞秒激光在金刚石较深位置形成受损层,有望实现大尺寸金刚石晶圆的剥离,该方法能避免其他工艺的复杂问题,为大尺寸金刚石复制提供了新方向。未来展望:激光剥离技术有望成主流综合现阶段半导体晶圆复制技术与金刚石复制技术的发展情况,我们可以对大尺寸金刚石晶圆复制技术的未来发展方向进行展望。 由于金刚石的超高硬度,多数常规复制技术难以适用于它,而离子注入剥离和激光剥离技术成为处理超硬材料的有效手段。但离子注入对环境要求严格、加工时间长,现阶段无法实现高效率稳定生产; 激光剥离技术不仅能切割超硬的金刚石半导体材料,还具备高精度、高质量、低损耗等优势。虽然目前激光剥离在金刚石领域尚处于起步阶段,作用机制和剥离工艺有待完善,但随着技术的不断创新,它有望成为大尺寸金刚石晶圆复制的主流技术,为金刚石在各个领域的广泛应用提供有力支撑。 大尺寸金刚石晶圆复制技术的发展虽面临挑战,但前景广阔。随着研究的深入和技术的突破,我们有理由相信,未来金刚石在半导体领域将发挥更大的价值,为科技发展注入新的活力。
  • 《不是晶体也不是非晶体 次晶态金刚石这样“诞生”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-20
    • 围绕在我们身边的固体物质,无论是尘埃沙砾还是金属宝石,其本质都是由原子在空间中堆积而成的。而根据原子的堆积是否有序,固体物质又可以被划分为晶体和非晶体。我们通常认为,在晶体材料中原子的排布均匀且规则,而非晶体的原子排列呈现出普遍的无序性。   近日,北京高压科学研究中心研究员缑慧阳等在高温高压条件下合成了一种新形态的金刚石——次晶态金刚石。该项成果的问世在结构拓扑上链接了非晶态和晶态,对于揭示非晶材料复杂的结构本质具有深远意义。   该研究成果在线发表于权威学术期刊《自然》杂志。   在晶体与非晶体之间   围绕在我们身边的固体物质,无论是尘埃沙砾还是金属宝石,其本质都是由原子在空间中堆积而成的。而根据原子的堆积是否有序,固体物质又可以被划分为晶体和非晶体。在晶体中,原子在三维空间上具有特定的堆积次序,其晶体结构可以用一个小的结构单元周期性表达。且在宏观视角下,我们无法分辨出其中的不连续性,因此我们通常认为,在晶体材料中原子的排布是均匀且规则的。同时,这也使得晶体材料的各个部分具有相同的物理、化学性质。   而与此相对,非晶体材料中的原子则缺乏长程的周期性排列,仅存在着短程有序性,即每个原子只在小范围内与其临近的原子在排列上呈现出一定的规则性。因此从宏观上观察,其原子排列呈现出普遍的无序性。而这种非晶体在结构上的差异,也直接导致其在力、声、光、电、磁、热等各方面材料性能上表现出极大不同。我们日常随处可见的玻璃便是最典型的非晶体材料之一。   缑慧阳表示,传统意义上一般将原子在0—0.5纳米直径范围内呈现出的有序性称为短程有序,0.5—2.0纳米范围内呈现出的有序性称为中程有序,大于2.0纳米的则称为长程有序。但他也提到,在实际的工作中,更常采用的方法是以有序配位壳层的数量来定义空间有序性,这是考虑到不同材料之间由于键长等差异导致的空间尺寸差异。   然而物质世界变幻无穷。研究人员发现,当温度升高时,晶体中的长程有序性会显著降低,逐渐向短程有序过渡,此时理解两种状态之间的差别变得异常困难。   那么对固体,尤其是强共价和类共价固体来说,在长程有序和短程有序之间,是否存在着一种中间态?为了探索这一结构之谜,理论科学家们提出了一种“次晶态”结构模型。“1930年以来,次晶态的概念偶尔出现在科学界,1950年德国霍斯曼教授基于一些软物质的发现,提出次晶态作为独立于晶体和非晶体的一种状态。”缑慧阳说,该概念在1980年前后逐渐被推广到聚合物、胶体、生物材料,甚至一些熔融态金属和合金、玻璃中。然而,在共价键合和类共价键合的材料中,科学家们却一直未能在自然界或实验室中发现这种完全由中程有序的次晶组成,而又不具有长程有序性的物质状态。尽管其曾经在半导体材料硅中提出过,但含量只有不到18%,而对于同族的金刚石来说,则一直没有相关研究涉及,更没有实验现象和证据。   处理后的富勒烯“不负众望”   但科学界不是没有过尝试。自次晶态概念被提出后,科学家们一直试图将这一状态从理论概念拓宽到各种各样的物质中。   缑慧阳介绍,2017年北京高压科学研究中心研究员曾徵丹等便曾利用金刚石对顶压机结合激光加热技术,成功在40—50吉帕和1800开尔文的压强、温度条件下合成出非晶态金刚石,然而极高的压强限制了合成样品的尺寸。该项成果成功地确定了sp3键合的非晶金刚石的真实存在,并且能够将其保留下来。   而且,科学界与工业界已经掌握了制备纳米级金刚石的技术,且纳米金刚石在各个领域得到了非常广泛的应用,具有广泛的实用价值。基于这样的研究背景,缑慧阳团队决定利用当下最先进的大腔体高温高压技术,突破传统大体积压机的压力范围,进行30吉帕以上压强的毫米级样品的研究。   缑慧阳和团队选取了不同特点的前驱物,分别是富勒烯、玻璃碳和洋葱碳,旨在探索不同前驱物在高压下的结构及微结构的转变过程和路径。和预想中的一样,研究团队在30吉帕压强下,1800开尔文以上的高温范围内,观察到了纳米金刚石的形成。但是只有富勒烯在30吉帕和1500—1600开尔文的压强、温度条件下出现了能够保留到常压的、具有中程有序的非晶金刚石,这是此前从未有过的发现。   但仅是发现还不够,要想对其进行深入细致的研究,还要求研究者能够对这种截留的具有中程有序的非晶金刚石进行详细的结构表征和模型构建。于是,缑慧阳及其合作者通过X射线、对关联函数、谱学、透射电镜等方法对其结构与微结构进行表征,并采用先进的大尺度分子动力学模拟对其进行详细对比和模型构建,最终将其识别确定为次晶态金刚石。这种结构的金刚石本质上是在非晶基体中引入纳米尺寸的中程有序结构。其发现不仅使研究者深入理解了这种特殊的金刚石,掌握了其独特性,更是填补了非晶结构和晶体结构之间原子排列尺度上的缺失环节,为深层次理解非晶材料的复杂结构提供了密钥。   三个因素协调是关键   缑慧阳认为,此次能够成功合成次晶态金刚石,原因除了非晶金刚石自身具有更高的短程有序性外,还取决于三方面的决定性因素,即对于前驱物的选择、适宜的压力与温度以及对保温时间的控制。   在前驱物的选择上,缑慧阳团队选择了碳的三种同素异形体分别进行尝试,并最终在富勒烯上成功取得突破。富勒烯化学式为C60,由于每个分子中包含60个碳原子,并呈现出12个五边形所组成的球状,也被形象地称为足球烯。   缑慧阳向记者分析道,在高压的作用下,C60分子间的聚合作用为形成高密度的sp3键合提供了均匀的形核点,这使得在较低的压力和温度下形成sp3含量接近100%的非晶金刚石成为可能。而30吉帕甚至更高的压力则有助于提高形核的密度,再配合以适当的温度,便能够促进sp2向sp3转变,并抑制其快速地结晶。随后,经过适当时间的等温退火,便可使得非晶金刚石中逐步、动态地出现大量次晶态。   同时,缑慧阳也表示,或许除了富勒烯外,其他两种前驱体也可能会在某个温压区间内生成纳米级次晶金刚石,但仅就目前其所探索的压强、温度、时间范围内,尚未捕捉到。因此他认为,发现并成功截留次晶这种亚稳状态的关键正是在于对压强、温度和时间的有效把控,只有实现三者的完美协调,才能取得理想中的结果。   另一方面,此次研究能够取得突破性进展,同样离不开大腔体高温高压技术的发展。根据缑慧阳介绍,大腔体压机技术目前已经相对成熟,但在常规的压力组装方式下,传统大腔体压机的压力极限一般为27吉帕。而北京高压科学研究中心的科研人员通过改变碳化钨压砧的几何形状和对一级压砧进行精确控制,将压力提升到了30—50吉帕。同时,缑慧阳团队还利用高质量的碳化钨压砧,不进行任何调整,优化组装方式,实现了2000摄氏度下毫米量级的30吉帕高压。   除了填补理论上的空白,次晶态金刚石的合成更具备广泛的应用价值。次晶态金刚石除了具有和普通晶体金刚石相当的力学性能以外,还有非常独特的可调节的光学性能。“这意味着次晶态金刚石可能会是一个极端条件下非常良好的窗口材料。”缑慧阳指出,由于次晶态金刚石具有非常宽的荧光峰和较高的热稳定性,预期未来将在包括生物医学等在内的多个领域产生更加广泛的应用。