《美中科学家在线虫中发现可延长寿命和增强老年运动能力的分子机制》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 江洪波
  • 发布时间:2019-05-08
  • 1月2日,美国密歇根大学和我国华中科技大学科学家合作在秀丽隐杆线虫体内发现一种抑制神经元活动的SLO-1分子,该分子可放缓神经元向肌肉组织发送信号,使线虫运动能力降低。研究人员通过基因编辑技术和化学药物抑制SLO-1分子后,延长了线虫寿命并显著增强了“老年”线虫的运动能力。线虫作为生物学研究中的模式动物,其衰老机制或将促进人类抗衰方面的研究突破。相关研究发表于《科学进展》期刊。

  • 原文来源:https://advances.sciencemag.org/content/5/1/eaau5041/tab-article-info
相关报告
  • 《科学家揭示线粒体翻译损伤通过激活线粒体UPR延长线虫寿命》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-05-18
    • 近日,《氧化还原生物学》(Redox Biology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrial translational defect extends lifespan in C. elegans by activating UPRmt。 该工作鉴定了首例由一个编码基因,通过mRNA翻译重起始产生细胞质与线粒体两种苏氨酰-tRNA合成酶(ThrRS),揭示线粒体翻译缺陷通过激活线粒体未折叠蛋白反应(UPRmt)延长线虫寿命,同时揭示氨基酰-tRNA合成酶(aaRS)缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性与物种间的保守性。  真核生物有至少两套蛋白质合成系统,需用至少两套aaRS。通常情况下,两套核基因编码细胞质与线粒体aaRS。由一种基因编码两种aaRS的情况相对较少,且具体机制尚待深入研究。线粒体作为半自主性细胞器,有其自身的基因组(mtDNA),负责编码少量对于线粒体氧化磷酸化复合物关键的蛋白质亚基,在线粒体发生、结构与功能调控方面具有重要作用。由于线粒体在细胞能量供应、代谢调控及命运决定中的核心作用,人类线粒体蛋白质合成紊乱常导致包括神经退行性疾病、心脏病、肌无力、癫痫、耳聋、生殖缺陷等多组织器官受累的疾病表型,统称为线粒体脑肌病。但是线粒体蛋白质合成对于其他真核模式生物的生物学功能了解较少。   该研究中,研究人员分析了线虫(C. elegans)ThrRS的基因与蛋白质形式,发现线虫只有一个潜在的ThrRS基因tars-1,但却注释两种不同长度的ThrRS;通过RT-PCR以及5’-RACE方法证明,在线虫体内,只有一种tars-1 mRNA,可能利用翻译重起始产生两种形式的ThrRS;利用在哺乳动物细胞中的荧光定位实验,明确长形式ThrRS(CeThrRS-1)与短形式ThrRS(CeThrRS-2)分别定位于线粒体与细胞质中。通过构建两种酵母遗传学突变株,研究证明体内tars-1通过翻译重起始产生CeThrRS-1 以及CeThrRS-2,它们分别在线粒体与细胞质蛋白质合成中发挥作用;以CeThrRS-2为研究对象,系统研究了其介导的细胞质与线粒体tRNA氨基酰化反应的机制,并阐明了其催化的蛋白质合成质量控制机制。为了研究线粒体tars-1的生理功能,研究人员通过CRISPR–Cas9构建线粒体tars-1敲低的线虫品系,发现线粒体tars-1 敲低线虫出现发育迟缓、运动能力下降、产卵下降、寿命延长的表型,进一步研究发现线粒体功能受损:耗氧率降低、复合物Ⅰ活性下降、线粒体出现还原应激,UPRmt被激活,而线虫寿命的延长依赖于UPRmt的激活。研究人员敲低线虫及哺乳动物细胞中多种线粒体aaRS,发现都能激活UPRmt,说明线粒体aaRS缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性及物种间的保守性。   该研究从基因、转录本、蛋白质形式、生化机制、细胞定位、细胞器功能与动物整体水平,首次系统阐释了由一种ThrRS基因编码两种细胞定位的ThrRS的分子机制,建立并阐明了线虫ThrRS介导的蛋白质合成速度与质量控制机制,揭示了线粒体翻译损伤通过激活线粒体UPR延长线虫寿命。相关研究为更加深入认识线粒体蛋白质合成在真核生物衰老与寿命中的关键作用提供了新的基础。   相关研究工作得到科学技术部部、中国科学院、国家自然科学基金委、上海市科学技术委员会的资助。
  • 《新发现可延长水系电池使用寿命》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-16
    • 8月13日,从海南大学获悉,该校海洋科学与工程学院史晓东/田新龙教授团队,基于高通量理论计算和锌离子交换策略,开发出适用于水系锌碘电池的莫来石基固态电解质。相关研究成果发表在国际学术期刊《先进材料》上。 碘元素是海洋中蕴藏丰富的一种卤族元素,平均每升海水中约含碘0.06毫克,海洋总碘储量预计达930亿吨。开发高性能、长寿命的水系锌碘电池,对于推动海洋卤素资源高价值利用具有重要意义。 研究人员介绍,锌枝晶、活性碘溶解和多碘化物穿梭效应,是当前诱发锌碘电池容量衰减,造成其短寿的首因。史晓东和田新龙一致认为,研发适用于水系电池的新型固态电解质是解决这一根源性问题,提高锌碘电池容量保持率、延长其使用寿命的突破点。 为此,该研究团队通过理论计算和电化学测试,发现莫来石基固态电解质具有本征电子绝缘、低锌离子扩散能垒和多碘化物强吸附作用等优良特性。这些特性使它能够起到隔膜和电解液的双重作用,有效隔离锌金属负极和载碘正极的氧化还原反应。在电池循环过程中,莫来石基固态电解质能够引导锌负极侧锌离子均匀地沉积和剥离行为,抑制锌枝晶和副产物生长,同时在载碘正极侧能够抑制活性碘溶解和多碘化物穿梭效应,从而降低电池容量的衰减速率。 田新龙表示,此次研究工作首次将储量丰富、廉价易得的天然矿物质用作水系电池固态电解质,兼顾水系电池低成本、高性能的应用需求,既能为长寿命水系储能器件研发提供新思路,又能指导矿物质基固态电解质的优化设计,并促进其在锌基二次电池中的推广应用。