《科学家揭示线粒体翻译损伤通过激活线粒体UPR延长线虫寿命》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-05-18
  • 近日,《氧化还原生物学》(Redox Biology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrial translational defect extends lifespan in C. elegans by activating UPRmt。 该工作鉴定了首例由一个编码基因,通过mRNA翻译重起始产生细胞质与线粒体两种苏氨酰-tRNA合成酶(ThrRS),揭示线粒体翻译缺陷通过激活线粒体未折叠蛋白反应(UPRmt)延长线虫寿命,同时揭示氨基酰-tRNA合成酶(aaRS)缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性与物种间的保守性。  真核生物有至少两套蛋白质合成系统,需用至少两套aaRS。通常情况下,两套核基因编码细胞质与线粒体aaRS。由一种基因编码两种aaRS的情况相对较少,且具体机制尚待深入研究。线粒体作为半自主性细胞器,有其自身的基因组(mtDNA),负责编码少量对于线粒体氧化磷酸化复合物关键的蛋白质亚基,在线粒体发生、结构与功能调控方面具有重要作用。由于线粒体在细胞能量供应、代谢调控及命运决定中的核心作用,人类线粒体蛋白质合成紊乱常导致包括神经退行性疾病、心脏病、肌无力、癫痫、耳聋、生殖缺陷等多组织器官受累的疾病表型,统称为线粒体脑肌病。但是线粒体蛋白质合成对于其他真核模式生物的生物学功能了解较少。

      该研究中,研究人员分析了线虫(C. elegans)ThrRS的基因与蛋白质形式,发现线虫只有一个潜在的ThrRS基因tars-1,但却注释两种不同长度的ThrRS;通过RT-PCR以及5’-RACE方法证明,在线虫体内,只有一种tars-1 mRNA,可能利用翻译重起始产生两种形式的ThrRS;利用在哺乳动物细胞中的荧光定位实验,明确长形式ThrRS(CeThrRS-1)与短形式ThrRS(CeThrRS-2)分别定位于线粒体与细胞质中。通过构建两种酵母遗传学突变株,研究证明体内tars-1通过翻译重起始产生CeThrRS-1 以及CeThrRS-2,它们分别在线粒体与细胞质蛋白质合成中发挥作用;以CeThrRS-2为研究对象,系统研究了其介导的细胞质与线粒体tRNA氨基酰化反应的机制,并阐明了其催化的蛋白质合成质量控制机制。为了研究线粒体tars-1的生理功能,研究人员通过CRISPR–Cas9构建线粒体tars-1敲低的线虫品系,发现线粒体tars-1 敲低线虫出现发育迟缓、运动能力下降、产卵下降、寿命延长的表型,进一步研究发现线粒体功能受损:耗氧率降低、复合物Ⅰ活性下降、线粒体出现还原应激,UPRmt被激活,而线虫寿命的延长依赖于UPRmt的激活。研究人员敲低线虫及哺乳动物细胞中多种线粒体aaRS,发现都能激活UPRmt,说明线粒体aaRS缺陷相关线粒体翻译功能受损激活UPRmt具有普遍性及物种间的保守性。

      该研究从基因、转录本、蛋白质形式、生化机制、细胞定位、细胞器功能与动物整体水平,首次系统阐释了由一种ThrRS基因编码两种细胞定位的ThrRS的分子机制,建立并阐明了线虫ThrRS介导的蛋白质合成速度与质量控制机制,揭示了线粒体翻译损伤通过激活线粒体UPR延长线虫寿命。相关研究为更加深入认识线粒体蛋白质合成在真核生物衰老与寿命中的关键作用提供了新的基础。

      相关研究工作得到科学技术部部、中国科学院、国家自然科学基金委、上海市科学技术委员会的资助。

  • 原文来源:https://www.cas.cn/syky/202305/t20230512_4887039.shtml
相关报告
  • 《我国科学家揭示线粒体翻译损伤通过激活线粒体UPR延长线虫寿命》

    • 来源专题:战略生物资源
    • 编译者:郭文姣
    • 发布时间:2023-07-11
    • 5月7日,国际学术期刊 Redox Biology 在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)周小龙研究组与中国科学院生物物理研究所陈畅研究组最新合作研究成果“Mitochondrial translational defect extends lifespan in C. elegans by activating UPR mt ”。 该工作鉴定首例由一个编码基因,通过mRNA翻译重起始产生细胞质与线粒体两种苏氨酰-tRNA合成酶(ThrRS);揭示线粒体翻译缺陷通过激活线粒体未折叠蛋白反应(UPR mt )延长线虫寿命;揭示氨基酰-tRNA合成酶(aaRS)缺陷相关线粒体翻译功能受损激活UPR mt 具有普遍性与物种间的保守性。   真核生物有至少两套蛋白质合成系统,需用至少两套aaRS。通常情况下,两套核基因编码细胞质与线粒体aaRS。由一种基因编码两种aaRS的情况相对较少,且具体机制尚待深入研究。线粒体作为半自主性细胞器,有其自身的基因组(mtDNA),负责编码少量对于线粒体氧化磷酸化复合物关键的蛋白质亚基,在线粒体发生、结构与功能调控中具有重要作用。由于线粒体在细胞能量供应、代谢调控及命运决定中的核心作用,人类线粒体蛋白质合成紊乱常导致包括神经退行性疾病、心脏病、肌无力、癫痫、耳聋、生殖缺陷等多组织器官受累的疾病表型,统称为线粒体脑肌病。但是线粒体蛋白质合成对于其他真核模式生物的生物学功能了解较少。   本研究中,研究人员首先分析了线虫( C. elegans ) ThrRS的基因与蛋白质形式,发现线虫只有一个潜在的ThrRS基因 tars-1 , 但却注释两种不同长度的ThrRS;通过RT-PCR以及5’-RACE方法证明在线虫体内,只有一种 tars-1 mRNA,可能利用翻译重起始产生两种形式的ThrRS; 利用在哺乳动物细胞中的荧光定位实验,明确长形式ThrRS ( Ce ThrRS-1)与短形式ThrRS ( Ce ThrRS-2)分别定位于线粒体与细胞质中;通过构建两种酵母遗传学突变株,证明体内 tars-1 通过翻译重起始产生 Ce ThrRS-1 以及 Ce ThrRS-2,它们分别在线粒体与细胞质蛋白质合成中发挥作用;以 Ce ThrRS-2为研究对象,系统研究了其介导的细胞质与线粒体tRNA氨基酰化反应的机制,并阐明了其催化的蛋白质合成质量控制机制。为了研究线粒体 tars-1 的生理功能,通过CRISPR–Cas9构建线粒体 tars-1 敲低的线虫品系,发现线粒体 tars-1 敲低线虫出现发育迟缓、运动能力下降、产卵下降、寿命延长的表型,进一步研究发现线粒体功能受损:耗氧率降低、复合物Ⅰ活性下降、线粒体出现还原应激,UPR mt 被激活,而线虫寿命的延长依赖于UPR mt 的激活。进一步敲低线虫及哺乳动物细胞中多种线粒体aaRS,发现都能激活UPR mt ,说明线粒体aaRS缺陷相关线粒体翻译功能受损激活UPR mt 具有普遍性及物种间的保守性。   本研究从基因、转录本、蛋白质形式、生化机制、细胞定位、细胞器功能与动物整体水平,首次系统阐释了由一种ThrRS基因编码两种细胞定位的ThrRS的分子机制、建立并阐明了线虫ThrRS介导的蛋白质合成速度与质量控制机制、揭示了线粒体翻译损伤通过激活线粒体UPR延长线虫寿命。以上研究为更加深入认识线粒体蛋白质合成在真核生物衰老与寿命中的关键作用提供了新的基础。   中国科学院生物物理所博士生郭苗苗、高级工程师乔新华、博士后王圆圆及中国科学院分子细胞科学卓越创新中心博士生李子涵为本文共同第一作者。陈畅研究员与周小龙研究员为本文共同通讯作者。感谢中国科学院分子细胞科学卓越创新中心王恩多研究员给予的大力支持。本课题获得科技部、中国科学院、基金委、上海市科委的资助。   文章链接:https://doi.org/10.1016/j.redox.2023.102722  
  • 《科学家揭示一种阻止蛋白聚集物在线粒体中聚集的新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-01
    • 蛋白聚集物对线粒体功能是有害的,因而会破坏向它们的宿主细胞提供化学能。在一项新的研究中,来自德国慕尼黑大学等研究机构的研究人员描述了一种阻止这些蛋白聚集物在线粒体中聚集的蛋白复合物。相关研究结果近期发表在Nature期刊上,论文标题为“Structure and function of Vms1 and Arb1 in RQC and mitochondrial proteome homeostasis”。 作为一种细胞器,线粒体为高等生物中的细胞提供它们的代谢和功能维持所必需的化学能。此外,许多必需代谢物的生物合成发生在这些细胞器中。因此,必须快速检测和修复它们的功能出现的任何扰动---比如,错误折叠蛋白的异常堆积。 在慕尼黑大学生物医学中心的Walter Neupert、慕尼黑大学基因中心的Roland Beckmann和日本仙台大学的Toshifumi Inada的领导下,这些研究人员如今阐明了细胞抑制前往线粒体的毒性蛋白聚集物形成的机制之一。如果不加以抑制的话,这些蛋白聚集物就会切断为不可或缺的细胞功能提供的能量。 蛋白由称为核糖体的细胞器合成。这些RNA-蛋白复合物(即核糖体)对从细胞核输出的确定着特定蛋白氨基酸序列的信使RNA(mRNA)蓝图进行解码。核糖体从确定的起始位点开始依次附着于mRNA分子上。这允许每个mRNA分子以装配线方式编程每种特定蛋白的许多拷贝的合成。如果这个过程受到中断而且前面的核糖体发生停滞,那么后面的核糖体堆积在后面。在这些条件下,它们附着的不完整蛋白(译者注:指的是因核糖体停滞,核糖体上的蛋白未完整合成)能够容易地彼此相互作用以形成蛋白聚集物。为解决此类交通拥堵,细胞激活“核糖体相关质量控制(ribosome-associated quality control, RQC)机制”。RQC途径的作用机制是让停滞的核糖体的两个亚基(60S大亚基和40S小亚基)分离开来(从而释放mRNA)并且将丙氨酸(A)和苏氨酸(T)附着到60S亚基上不完整蛋白的停滞羧基末端(译者注:指的是因核糖体停滞,核糖体在mRNA的特定局部大量堆积,核糖体上的新生蛋白未能完整合成,这就意味着在发生核糖体停滞后,新生蛋白的羧基末端停滞了,也就是羧基末端不再添加新的氨基酸)上。这样,这种不完整的蛋白从核糖体中释放出来,“CAT尾巴”标志着它随后会被降解。 然而,就线粒体蛋白而言,情况就更加复杂了。大多数受到抑制或发生停滞的线粒体蛋白是由附着在线粒体膜孔上的核糖体在细胞质中形成的,这些新生的线粒体蛋白通过这些孔直接进入这种细胞器。这种合成与线粒体摄取的紧密连接阻碍了CAT标记的蛋白在细胞质中的释放和裂解。此外,CAT标记的蛋白本身具有增加的聚集倾向,因此它们的输入对线粒体功能尤其有害。 幸运的是,细胞已进化出一种专门用于线粒体蛋白的RQC替代形式。这项新研究的作者之前已证实Vms1蛋白在这一途径中发挥着关键作用,但这种RQC模式的确切机制尚不清楚。Beckmann说,“通过将基于低温电镜的结构分析与生化、分子生物学和遗传学实验相结合,我们如今成功地阐明了Vms1的工作机制。”Vms1能够解离核糖体并释放出停滞的蛋白,不论这种停滞的蛋白是否携带CAT序列。因此,它有效地抵消了添加到线粒体蛋白上的CAT序列,从而降低了蛋白聚集的风险以及对线粒体和细胞功能的不利影响。此外,Beckmann及其同事们发现了一种之前未被描述的在这整个过程中发挥作用的蛋白:Arb1,并展示了它与Vms1之间如何相互作用。这些新的研究结果可能有助于更好地了解各种疾病,包括代谢疾病和神经退行性疾病,这些疾病与线粒体功能的损害有关。