《突破 | 半导体所在仿生覆盖式神经元模型及学习方法研究方面取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-12-06
  • 人工神经网络是模拟人脑神经活动的重要模式识别工具,受到了众多科学家和学者的关注。然而,近年来DNN的改进与优化工作主要集中于网络结构和损失函数的设计,神经元模型的发展一直非常有限。神经生物学和认知神经科学的研究表明,神经元的学习能力是生物神经系统完成学习和记忆任务的重要基础,这些机理可促使我们在神经元设计和优化方面进一步提高DNN的性能。
    受生物认知机制的启发,中国科学院半导体研究所高速电路与神经网络实验室李卫军研究员团队设计了一种具有高度柔性与可塑性的超香肠覆盖式神经元模型(HSCF neuron)(如图1所示)。研究团队定义了一种新的交叉熵和体积覆盖率损失函数,该损失函数可最大限度地压缩超香肠的体积,从而确保样本的类内紧凑性。研究团队引入了一种分裂迭代方法,将每个神经元模型视为一个弱分类器,并迭代增加弱分类器的数量,该迭代方法可自适应地确定HSCF神经元的最优数量,形成了端到端的学习框架(如图2所示)。最后,研究团队在模式识别领域的八个经典数据集上进行的对比实验和消融实验证明了该方法的有效性。超香肠覆盖式神经元模型可以应用于经典的DNN中以解决多种模式识别问题,具有广泛的应用与学术价值;此外,所提出的方法也证明了利用神经元可塑性增强DNN性能的可行性,为DNN的进一步发展提供了新的视角。
    该研究成果近日以“Hyper-sausage coverage function neuron model and learning algorithm for image classification”为题发表于模式识别领域TOP期刊《Pattern Recognition》(136 (109216), 2023), 文章发表后相继入选ESI热点与ESI高倍引论文,并入选期刊2023年Editors' Choice Paper。

    图1.超香肠覆盖式神经元模型及分类策略可视化表示

    图2. 基于超香肠覆盖式神经元模型的网络结构示意图

相关报告
  • 《突破 | 半导体所在氮化物位错演化机制及光电神经网络器件研究领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-24
    • III-族氮化物多采用蓝宝石衬底异质外延生长,由于大的晶格失配和热失配,导致高密度穿透位错(108-1010),极大地影响氮化物发光器件、电子电力器件性能。中国科学院半导体研究所刘志强研究员团队长期聚焦氮化物生长界面研究并形成系列研究成果,明确了原子尺度氮化物/蓝宝石生长界面构型,阐明了原子尺度界面应力释放机制。近期,半导体所刘志强研究员团队与北京大学高鹏教授,福州大学吴朝兴教授、郭太良教授,韩国汉阳大学Tae Whan Kim教授团队合作,在氮化物位错演化机制及光电神经网络器件研究领域取得新进展。 当前对于穿透位错的有效抑制手段有限且低效。为了进一步揭示氮化物生长界面的原子尺度位错演化过程,有效降低穿透性刃位错密度,半导体所刘志强研究员团队与北京大学高鹏教授团队开展合作,对GaN /Al2O3界面进行了平面高分辨透射电子显微镜(HRTEM)分析,同时观察到了摩尔图案(Moiré patterns)变形和失配位错的终止;并对摩尔图案变形区域进行原子级表征,基于原子结构以及伯格斯矢量分析,确定导致摩尔图案变形的缺陷类型为穿透刃位错,从而证明外延层中的穿透刃位错起源于界面处失配位错的融合反应(图1-2)。 基于此氮化物穿透位错演化机制的新理解,研究人员构建了滑移界面,降低了滑移势垒,引入了新的应力释放途径,从而揭示了氮化物生长界面位错原子级演化过程,提出了从源头上抑制位错生成的外延新思路,最终实现GaN外延层穿透刃位错密度降低近一个数量级。 基于高质量外延材料的氮化物光电器件是实现类脑神经网络的技术路线之一。半导体所刘志强研究员团队与福州大学吴朝兴教授,郭太良教授、韩国汉阳大学Tae Whan Kim教授团队合作,构建了基于高质量nano-LED的人工感知神经网络,模拟了人类神经系统中的多通路信号传递过程。 人脑神经元的应答是即时、高度并行、复杂输出的,构建仿生神经形态电子系统是类脑计算领域的重要研究课题。在交流脉冲驱动下,nano-LED生成具有记忆效应的电致光信号脉冲,利用光脉冲波形中的特征波峰对多个分布式传感器的电信号进行编码,并在人工感知神经网络中无串扰同步传输。构建的人工感知神经网络成功模拟了人脑的触觉感知,识别准确率达到98.88%。 图1 GaN/Al2O3界面STEM-HAADF刃位错直接观测图像及原子结构示意 图2 GaN/Al2O3界面穿透刃位错演化机制 图3 基于记忆电致发光的传入神经系统示意
  • 《突破 | 长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-12-25
    • 量子精密测量是利用光与原子相互作用的量子效应和技术,突破标准量子极限,以实现测量精度、灵敏度和稳定性全面超越经典测量手段的方法。这一颠覆性技术的关键是实现原子精细能级跃迁和量子态探测的窄线宽激光器。此外,激光器的高偏振特性也是提升激光稳频系统和量子干涉系统性能,制约测量准确度和分辨率的决定因素。因此,兼具窄线宽和线偏振的窄线宽半导体激光器在量子精密测量领域备受关注,其中,用于Cs原子里德堡态制备的852nm窄线宽激光器是典型代表。 中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。 图(a)激光器的激射光谱特性,(b)偏振消光比随注入电流的变化特性(插图为激光经不同波片旋转角度测量的激光功率),(c)延时自外差测量激光线宽的拍频功率谱及其拟合曲线,(d)洛伦兹线宽数值仿真与测试结果