《突破 | 长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-12-25
  • 量子精密测量是利用光与原子相互作用的量子效应和技术,突破标准量子极限,以实现测量精度、灵敏度和稳定性全面超越经典测量手段的方法。这一颠覆性技术的关键是实现原子精细能级跃迁和量子态探测的窄线宽激光器。此外,激光器的高偏振特性也是提升激光稳频系统和量子干涉系统性能,制约测量准确度和分辨率的决定因素。因此,兼具窄线宽和线偏振的窄线宽半导体激光器在量子精密测量领域备受关注,其中,用于Cs原子里德堡态制备的852nm窄线宽激光器是典型代表。

    中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。

    图(a)激光器的激射光谱特性,(b)偏振消光比随注入电流的变化特性(插图为激光经不同波片旋转角度测量的激光功率),(c)延时自外差测量激光线宽的拍频功率谱及其拟合曲线,(d)洛伦兹线宽数值仿真与测试结果

相关报告
  • 《突破 | 上海光机所在新型高温镍基合金激光焊接方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-09-06
    • 近期,中国科学院上海光学精密机械研究所激光智能制造技术研发中心杨上陆研究员团队在高温熔盐用新型结构材料激光焊接方面取得新进展。研究团队首次采用高功率激光器,实现了镍基高温合金的无缺陷焊接成形,并对焊接接头显微组织及力学性能进行了系统评价。 GH3539合金是我国自主研发的新型高温镍基合金,具有优异的高温机械和抗腐蚀性能,适用于超高温(≥850℃)熔盐环境。然而,较高的合金化导致该合金具有较高的焊接裂纹敏感性。为实现合金结构部件的高效高质激光焊接,团队利用光纤激光焊接技术,研究了不同焊接工艺参量对3mm板厚GH3539 合金焊接成形的影响,通过工艺优化抑制了焊接裂纹、气孔等缺陷的生成,首次实现GH3539 合金无缺陷焊接成形,在此基础上对焊接接头的显微组织和常温/高温力学性能进行了系统评价;并分析了激光焊接接头的拉伸断裂行为,阐明了合金激光焊接接头断裂模式。该工作为推动GH3539镍基高温合金激光焊接技术发展和合金的应用奠定了基础。 图 1:(a) GH3539激光焊接接头焊接截面;(b) GH3539合金微观组织;(c) GH3539合金激光焊接接头XRD结果;(d) GH3539合金激光焊接接头硬度分布; (e) 不同温度下母材及焊接接头的工程应力-应变曲线;(f) 不同温度下母材及焊接接头的平均延伸率
  • 《突破 | 上海光机所在高功率光纤传能方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-07-29
    • 近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室在高功率空芯光纤传能研究方面取得新进展。研究团队利用5米长反谐振空芯光纤成功实现了1微米波段千瓦级以上功率的连续激光的长时间柔性传输,相关研究成果以“Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 μm”为题在线发表于《光学快报》(Optics Letters)。 高功率光纤激光器在机械加工、医疗手术和军事国防领域都有着广泛的应用。受限于传统石英光纤的非线性激光损伤与能量损失,千瓦级以上激光传输一般采用大芯径石英光纤。光纤多模传输条件下,光纤远端激光聚焦尺寸大,光束质量差,根本上限制了其在精密加工等场景中的广泛应用。近些年出现的反谐振空芯光纤将光场束缚于中空的纤芯中,为激光传输提供了一个类似自由空间的环境。反谐振空芯光纤在长距离激光传输中,展现出良好的单模特性(M2<1.3),具有极高的损伤阈值,极低的非线性和色散,成为高功率激光传输新的突破口。 研究人员通过4-f透镜系统将1080 nm大功率工业连续光纤激光器的输出耦合进入5米长的自研反谐振空芯光纤(光纤损耗0.13dB/m@1080nm),实现了千瓦级激光的准单模传输。研究人员设计并制作的水冷耦合端子为空芯反谐振光纤提供高效热管理。在1500W激光入射功率和80%耦合效率下,实现了1kW功率以上的激光长距离光纤传输,且光纤端面无激光损伤。其中1KW入射功率下,反谐振空芯光纤在30分钟之内保持连续激光无损稳定传输。 研究发现了三类空芯光纤的激光损伤机制,初步建立了反谐振空芯光纤高功率连续激光损伤模型。理论估算表明,空气填充条件下的反谐振空芯光纤的连续激光传输功率高达97kW。本项目研究结果为进一步发展和优化微结构空芯光纤激光传能技术打下了坚实的基础。 本研究得到了国家自然科学基金、国际科技合作计划、中国科学院前沿科学重点研究项目、国家科技支撑计划的支持。 图1 (a)反谐振空芯光纤传输损耗测量图(插图为反谐振空芯光纤电镜图);(b) 基于反谐振空芯光纤的千瓦级高功率能量传输实验装置图 图2 基于反谐振空芯光纤的高功率能量传输(a)输出功率与耦合效率随输入功率变化图;(b)输出功率随时间变化曲线(输入功率为1000W) 图3 反谐振空芯光纤理论损伤阈值随耦合效率的变化曲线