《哈佛大学发布基因组编辑资料》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-11-22
  • 什么是基因组编辑?

    基因组编辑(Genome Editing)也称“基因编辑”(gene editing),是“使科学家能够改变生物体DNA的系列技术”。这些技术通过在基因组内部目标位置添加、改变或去除遗传物质来编辑DNA。

    基因组编辑其实不算新鲜,科学家们早已使用各种技术创造了数十年的遗传修饰生物(GMOs),但这些技术往往缓慢、昂贵且无法安全可靠地用于人类治疗。随着被称为CRISPR-Cas9系统的发现,比现有技术更快、成本更低、更准确的编辑系统应运而生,诸如ZFNs和TALENs系统。CRISPR-Cas9改编自一种天然存在的、保护细胞免受病毒感染的细菌基因组编辑系统,科学家们已经证明CRISPR可通过在预定的靶位点切割DNA在人体细胞中起作用,从而允许科学家插入不同的DNA序列。

    (1)基因组编辑的关键优势与应用

    基因组编辑的主要作用在于人类健康和疾病治疗,同时还有一些其他方面应用(见表1):它可用于提高农业生产力、食品安全性和食品的营养质量;通过基因组编辑可以使物种更能抵抗疾病和气候变化,也可促进环境保护;此外,利用基因组编辑改进工业生物过程和生物燃料也会产生额外的好处。

    (2)基因组编辑技术的作用与局限

    目前关于CRISPR的研究主要集中在动物和实验室培养模型上,人类应用领域方面的研究也在逐渐增多。基于CRISPR的治疗方案已在人体中得到了初步应用,它可治疗甚至治愈一些单基因遗传疾病,如囊肿性纤维化、血友病和镰状细胞贫血症。在某些类型的癌症中,针对工程细胞的免疫治疗试验也正在进行。从中期来看,CRISPR可用于降低遗传基础更复杂的其他疾病的总体风险,但许多包括心脏病、糖尿病、神经系统疾病和精神疾病在内的常见疾病虽有数十或数百种已知的遗传风险因素,但往往也受一系列诸如压力、饮食和毒素暴露等环境因素的影响,因而目前这项技术的应用存在一定的局限,不过今后可能会有越来越多的进展。

    现行监管与治理框架

    围绕人类基因组编辑的监管和治理框架目前分为两个不同类别,即种系编辑框架和体细胞编辑框架。种系编辑是对人类卵子、精子或胚胎的修饰,用于改变尚未出生的人的遗传物质,这种改变可以传递给后代。体细胞编辑则是对诸如肝脏、心脏或大脑等不会传递给后代的细胞遗传物质进行修饰。

    (1)种系编辑规范

    许多国家都对人类胚胎实验进行了限制,且大多数发达国家都通过了禁止或取消人类种系编辑的法律,包括加拿大、德国、法国、韩国和美国。自1979年以来,美国国立卫生研究院的人类胚胎研究小组一直坚持“14天规则”,即将人类胚胎研究限制在其产生或发育阶段的14天之内。

    (2)体细胞编辑框架(不可遗传的遗传变化)

    直体细胞编辑的监管程序属于医疗产品的监管范围,并受临床试验过程的约束。

    (3)国际治理框架

    围绕人类基因组编辑技术的伦理和监管框架,国际上已进行了多次对话。在2016-2018年间,经济合作与发展组织(OECD)的科学技术和创新主任主持了一系列围绕体细胞基因组编辑的国际会议。经合组织成员国政府、科学家、医生、生物伦理学家、民间社会和其他相关人士都共同探讨了技术现状和利益相关者的关注点。会议表明,成员国立法机构和监管机构之间可能需要协调一系列问题,包括:

    •进行特定基因组编辑可接受的风险程度;

    •当多方观点未达成一致时,应用哪一方的宗教或文化价值体系来决定什么样的应用可以被接受?

    •如何将公众意见纳入每个国家的决策过程?

    •领导者如何确保公众成员有足够的基因知识能够参与决策?

    公共目的考量

    基因组编辑疗法正处于人类试验的初始阶段,因此其可行性、安全性和影响程度仍然未知。一些关键变量最终将决定基因组编辑技术在未来的使用方式,目前已知的变量包括:

    •技术可行性——细胞基因编辑是否可以有效地介导成年人的健康结果以及它对于哪些疾病是有效的。

    •安全性——受影响者的健康结果及其对基因组编辑的免疫反应。

    •所有权和创新——技术是由少数专利持有者拥有并限制其他创新者使用,还是可被广泛拥有和使用。

    •可及性——治疗和改进是可供所有人享用还是只有少数人能够负担并使用,以及这种技术在先进经济体和新兴经济体中的可用程度。

    •控制——访问权限对所有人开放还是需要专门的许可证才可使用该技术; “生物黑客”、自我实验是否被允许。

    (1)短期问题

    以下伦理问题对正在进行的研究和临床试验有直接影响:

    •人类胚胎实验的伦理——人类胚胎实验应以何种限度进行将是各国的持续争议点。公众对人类基因组编辑的看法以及各国家利益相关者的倡导活动之有效性都将影响其结果。

    •临床试验——体细胞中人类基因组编辑的临床试验面临与其他形式的医疗产品相同的道德问题,包括获取患者的同意、确保患者的安全、平衡尤其是第一次人体试验的风险与收益等。

    在人类健康方面,应用不直接编辑人类DNA的CRISPR技术也存在一些忧虑:

    •生物安全忧虑——CRISPR技术使得病原体的基因编辑可被广泛实现,但其生物安全威胁评估尚无定论。

    •生物多样性忧虑——些饱受推崇的CRISPR“基因驱动”应用,例如通过植入缺陷基因降低携带疟疾的蚊子传播病原体的能力,这可能会对整个生物多样性、农业、粮食安全和气候稳定造成意想不到的后果。

    (2)中期问题

    当人类基因组编辑技术变得更加先进并可用于医疗领域时,可能会出现一些其他问题,包括:

    •定价及报销——人类基因组编辑治疗存在价格欺诈的风险以及国家和私人保险公司的差异化报销比,这可能会导致人口健康结果(population health outcomes)的显著差异。

    •自主性——如果消费者可以自己动手使用该技术,则可能会出现关于消费者自我管理或实验的安全性问题。自行基因编辑不大可能与临床治疗具有同等的安全性和有效性。

    •许可与授权——当一些患者无法在主流医疗环境中获得服务时,他可能会转向未经授权的诊所寻求基因组编辑服务。因此需要许可制度或其他保护措施以确保患者的安全。

    (3)长期问题

    从长远来看,一旦一项技术变得成熟和普遍,其影响就会变得更加难以预测。人类基因组编辑技术的广泛使用可能会产生严重的社会影响,虽然这些后果在未来很长一段时间内可能不会发生,但在技术发展的初始阶段时刻考虑到这种后果是非常重要的。

    •社会不平等——如果基因组编辑被广泛采用且只有特定群体才可享用,社会不平等现象可能会被加剧,国家内部以及发达国家和发展中国家之间的经济鸿沟也将被扩大。

    •定向进化——些国家可能会强制进行基因组工程来减少国家医疗保健支出和残疾支出,或为追求某些国家目标(人口智力、种族或民族构成)利用该技术开展优生学(eugenics)项目。

相关报告
  • 《Illumina与Broad Institute宣布协议共同开发基因组》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-12
    • Illumina,Inc.与麻省理工学院和哈佛大学广泛研究所今天宣布,他们已经为合作开发二级基因组分析算法和软件进行了合作。两家机构的顶级数据科学家将合作,将业界领先的开源GATK算法与Illumina的DRAGEN(基因组动态读取分析)Bio-IT平台的速度和更高的准确性结合起来,以用于常用方法,包括小变异(SNV) )和大型变体(CNV / SV)检测。 “ Broad和Illumina致力于确保各种规模和学科的实验室都能使用最佳算法,”麻省理工学院和哈佛大学广泛数据研究院首席数据官Anthony Philippakis博士说。 “通过汇集我们的专业知识来改进我们的开源工具包,我们可以提供我们最先进的综合产品线,同时确保它对全球基因组学界仍然是广泛可用,开放和可访问的。这是一项长期的合作伙伴关系-我们将共同创新,以推动要求基因组学发展的新型变异的前沿。” 共同开发的辅助分析软件将是开源的,并将通过Broad Institute的常规社区支持渠道(例如GitHub)进行分发。 Illumina打算在Illumina DRAGEN-Bio-IT平台上开发专有的,硬件加速版本的共同开发软件。该软件的加速版本将在DRAGEN Bio-IT平台上提供大量当前可用的管道,作为补充。 Broad Institute和Illumina团队将验证这种硬件加速版本的结果在功能上与共同开发的开源软件的结果相同,以确保下游分析的数据互操作性。 Illumina产品开发高级副总裁Susan Tousi说:“ Illumina的目标是向我们的客户提供行业领先的技术,无论这意味着我们自己创建工具,内部引进新技术和团队,还是通过合作来增强我们的产品。” “这就是为什么去年我们如此激动地收购Edico Genome和DRAGEN的原因,我们本着这种精神与Broad公司合作,旨在为常用方法提供一流的开源软件。通过创建将DRAGEN和GATK的优点结合在一起的一套算法,我们相信我们可以通过减少分析的成本和时间来推动测序的临床应用。” 博德研究所的GATK是鉴定种系DNA和RNA测序数据中SNP和插入缺失的行业领导者。这些工具主要用于处理用Illumina测序技术生成的外显子组和整个基因组。随着时间的流逝,范围扩大到包括体细胞短变异体调用,并解决了拷贝数变异(CNV)和结构变异(SV)。除了变体调用程序外,GATK还包括实用程序,可以执行相关任务,例如高通量测序数据的处理和质量控制。 Illumina DRAGEN生物it平台提供精确、快速的生殖系和体细胞SNV、SV、CNV(A)的二次分析,以及甲基化、RNA和重复扩增工作流程。采用可重构的现场可编程门阵列技术(FPGA)实现了管道硬件加速。DRAGEN管道可以通过本地服务器在本地部署,也可以通过Illumina的BaseSpaceTM Sequence Hub在云中部署。 联合开发的二次分析软件将为处理高通量测序数据和执行变型发现分析提供一种标准化的方法,旨在达到最佳的敏感性、准确性和可伸缩性。 ”这种方法对于社区是一个积极的步骤,将增加可用选项的数据分析来提高质量和降低当前的成本分析方法,”伊万伯尼说,导演,基因和健康(GA4GH)和全球联盟EMBL的欧洲生物信息学研究所。“科学界已经准备好从这次合作中受益,朝着黄金标准的分析方法和文件格式发展,我们相信这将进一步促进机构间的互操作性、研究和见解,以最大限度地发挥基因组学在卫生保健方面的影响。” 有兴趣参加休斯顿ASHG展会的人士可以于2019年10月15日至19日参观Illumina展位或Broad展位。
  • 《CRISPR基因组编辑法专利之争出现戏剧性转折》

    • 来源专题:转基因生物新品种培育
    • 编译者:丁倩
    • 发布时间:2016-10-24
    • 有着巨大商业价值的新基因组编辑工具CRISPR历时9个月的专利大战,出现了两个惊人的转折。上周,争夺CRISPR专利权之一的研究机构——博德研究所律师提交了可能使其获胜的议案。10月4日,新加入战局的法国生物制药公司Cellectis,可能使整场战争变得悬而未决,它刚被授予的专利广泛覆盖基因组编辑法,包括CRISPR。 博德研究所隶属于哈佛大学和麻省理工学院,拥有13项CRISPR专利,受到来自加州大学(UC)和两个共同原告的炮轰。今年1月,美国专利商标局(PTO)表示,将在抵触程序中审查专利申请书。这引发了争夺CRISPR知识产权的大战,集中于博德研究所被授予的专利和仍在审查中的加州大学的专利申请。 9月28日,博德研究所要求专利局官员将其已被授予的四项专利从主案中分离出来:两项专利集中在saCas9,两项专利描述的能构建CRISPR-Cas9以靶定真核细胞细胞核的技术。 现在,各方都在等待专利官员如何就这些议案进行裁决,并推测任何决定可能对战局中的机构和研究人员的收益产生的影响。