《增强了二维半导体上自组装等离子体纳米粒子的光物质相互作用》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-10-15
  • 多用途材料库的二维过渡金属二硫族化合物(TMD)单层膜为许多未开发的研究领域所关注。单层TMDs表现出高效的激子发射,但由于其低维度引起的弱光吸收限制了其潜在的应用。为了增强TMDs的光物质相互作用,虽然各种等离子体杂交方法已经深入研究,但通过自组装过程控制等离子体纳米结构仍然是一个挑战。本文报道了在室温下通过老化的自组装工艺在TMDs上杂交的等离子体银纳米颗粒(NPs)中强光物质相互作用。这种杂交是通过将化学气相沉积生长的MoS2单层膜转移到薄膜上实现的。几周后老化的真空干燥器、Ag原子heterolayered电影分散的二硫化钼层二氧化硅垫片和自我检测集群到二硫化钼点缺陷,导致形成的Ag NPs与估计≈直径50 nm。与裸MoS2相比,Ag - NP/MoS2杂化体的光致发光强度提高了35倍,这是由于等离子体Ag - NPs附近的局部场增强所致。通过数值模拟和暗场散射显微镜系统地研究了这种混合的局域表面等离子体共振模式。

    ——文章发布于2018年10月10日

相关报告
  • 《以氨基酸和肽为导向合成手性等离子体金纳米粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-01-09
    • 了解分子的手性或利手性是很重要的,因为在许多生化反应中都能观察到对映体的选择性,而且由于手性超材料具有特殊的光操纵能力,如偏振控制、负折射率和手性传感,近年来的发展也很重要。手性纳米结构的制备采用了岩石学、分子自组装等纳米制造技术,但三维手性结构的大规模、简单的制备方法仍是一个挑战。因此,手性转移是一种更简单、更有效的手性形态控制方法。尽管一些研究已经描述了分子手性向微米级螺旋陶瓷晶体的转移,但这种技术还没有应用于数百纳米的金属纳米颗粒。本文提出了一种手性金纳米粒子的合成策略,利用氨基酸和多肽控制纳米粒子的光学活性、旋向性和手性等离子体共振。实现这样的手性结构的关键需求是high-Miller-index表面的形成({hkl}, h≠k≠l≠0)本质上的手性,由于存在“变态”sites20, 21、22纳米颗粒在增长。手性成分存在于纳米粒子的无机表面以及氨基酸和多肽中,导致这些元素在界面上的对映选择性相互作用;这些相互作用导致纳米粒子的不对称演化,并形成由高度扭曲的手性元素组成的螺旋状形态。我们培养的金纳米颗粒显示出很强的手性等离子体光学活性(不对称因子0.2),即使随机分散在溶液中;这一观察结果是由理论计算和直接可视化的宏观色彩转换。我们预期,我们的策略将有助于合理设计和制造三维手性纳米结构,用于等离子体超材料的应用。
  • 《国家纳米科学中心:丁宝全课题组自组装金属等离子体纳米结构研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-21
    • 自组装贵金属纳米结构在光学检测器件中有重要的应用,如表面增强荧光散射、表面增强拉曼光谱和非线性光学等。如何能在纳米尺度上对贵金属纳米结构进行精确的控制,是具有挑战性的前沿课题之一。近年发展起来的DNA折纸术是一种独特的自下而上的自组装纳米技术,被用于制备多种尺寸、形貌的二维和三维纳米图案。DNA折纸纳米结构由于结构可设计性和空间寻址能力,在精确引导金属纳米粒子自组装形成可调控性能方面具有显著的优势。   2012年以来,国家纳米科学中心丁宝全课题组在利用DNA折纸结构作为模板构建三维的贵金属纳米结构以及其手性光学性质方面做创新性研究(J. Am. Chem. Soc., 2012, 134, 146; Nano Lett., 2013, 13, 2128; J. Am. Chem. Soc., 2016, 138, 5495)。在构建刺激响应性的金属纳米结构和三维可重构的金属纳米结构方面也有重要进展(Nano Lett., 2017, 17, 7125;ACS Nano, 2017, 11, 1172)。在最近发表的研究工作中,丁宝全研究组针对金蝴蝶结纳米天线(Bowtie nanoantenna)光学性质,首次利用DNA折纸技术作为模板构建了大约5nm间距的金蝴蝶结纳米天线,并且利用DNA折纸结构的可寻址性,在蝴蝶结纳米天线的中间可控的放置了一个拉曼探针分子,实现了单结构、单分子的拉曼增强。该研究成果以题为“DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single Molecule Surface-Enhanced Raman Scattering”被Angew. Chem. Int. Ed.杂志在线发表(2018, DOI: 10.1002/anie.201712749)。   金的蝴蝶结纳米天线应用在光信号处理及超灵敏传感等研究已经被广泛的报道。但是之前的研究工作中所有的金属蝴蝶结结构的构建都是使用的微加工相关方法,而使用组装的方式来构建bowtie结构还从未有过报道。金三棱片(gold nanoprism)是典型的二维金属纳米结构,可在尖端产生很强的局域表面等离激元,基于两个金三棱柱构建的蝴蝶结天线会在二者尖端区域产生非常强的电磁场增强,这种增强效应在光学检测有很重要的应用。以DNA折纸结构为模板精确组装二维金属纳米结构尚属首次报导。与传统的单分子拉曼增强方法相比,这种策略的优越性在于可以精确控制拉曼探针分子的位置以及数量,从而实现可控的高强度的拉曼增强。这种组装体系有望作为一种单分子反应的检测器:通过监测拉曼信号变化,实现监测单个分子的反应进程。利用这种方法构建的蝴蝶结纳米天线,将可以与多种光学元件进行共组装为构建自组装的光学器件提供新的思路。该制备方法已申请中国发明专利。   该研究得到了国家自然基金委和中国科学院前沿科学重点研究计划等项目的支持。 a)DNA折纸结构模板组装金属bowtie结构示意图;b)金bowtie结构的原子力显微镜图和电镜图;c)单分子拉曼图谱