锂-空气电池具有极高的理论能量密度,达11000 Wh/kg,近10倍于传统的锂离子电池,被广泛认为是电池领域未来的颠覆性技术。然而循环性能差、倍率性能低等一系列问题阻碍了该电池技术的工业化应用。波士顿大学Dunwei Wang教授领导的研究团队设计合成了一种超高浓度的双三氟甲烷磺酰亚胺锂(LiTFSI)盐水电解质,有效地抑制了电解质中水分子的活性及其副反应,从而显著增强了电池的性能和循环寿命。研究人员首先配置了一份低浓度的LiTFSI盐水电解质,随后通过浓缩将盐浓度提升到了21摩尔的超高浓度,使得水分子大幅减少,且大部分通过化学键被固定在了LiTFSI分子周围,极少数处于游离状态,这有助于保持电解质的高导电率和抑制水分子带来的副反应,增强电池性能。研究人员以制备的超高浓度LiTFSI盐水作为电解质、多孔碳为正极应用于锂-空气电池,与传统的二甲醚(DME)、二甲基乙酰胺(DMA)有机电解质锂-空气电池进行对比研究。循环伏安测试结果显示,相比有机电解质,超高浓度LiTFSI盐水充放电过程主要就是放电产物过氧化锂(Li2O2)形成和分解,基本不涉及与H2O分子相关的副反应(如水分子分解、电解质分解),即高浓度LiTFSI盐水电解质电池电化学反应主要是O2和Li2O2之间的可逆非质子转换,这有助于提高电池性能。为了确定反应过程主要是过氧化锂(Li2O2)形成和分解,研究人员对充放电过程进行一系列研究和表征。放电产物的X射线衍射检测分析显示,产物在32.8°、34.9°和40.6°出现了最显著的衍射峰,为Li2O2所有,充电后上述衍射峰消失表明Li2O2分解。对放电产物定量分析显示,高浓度LiTFSI盐水电解质的回收率为85.0%,DME的回收率为79.4%,DMA的回收率为79.1%,高浓度LiTFSI盐水的最高回收产率有力地表明了在高浓度LiTFSI盐水中形成的副产物比在DME或DMA中生成的副产物少。随后进行恒电流测试,采用DME电解质电池循环次数为16次,而DMA电池循环次数更是少到个位数,仅为8次;相反采用超高浓度LiTFSI盐水电解质电池的循环次数达到了70次,远高于传统有机电解质,并且在50-400 mA/gcarbon的放电电流区间下,电池获得了1500-3500 mAh/gcarbon区间的放电比容量,展现出优异的高倍率性能。而当进一步用钌修饰的硅化钛(TiSi2)电极取代多孔碳电极,电池性能得到进一步提升,循环性能测试表明,在1000 mAh/gRu深度放电条件下,超高浓度LiTFSI盐水电解质锂-空气电池能够稳定运行300次,是目前文献报道的在同样放电深度下所获得的最长循环寿命。该项研究设计合成了全新的超高浓度盐水电解液,在保障电解质良好导电率的前提下,有效地“锁住”水分子抑制了副反应,显著提升了电池的性能和循环寿命,为设计开发高性能锂-空气电池开辟了新的技术路径。相关研究工作发表在《Chem》 。