《科学家发现简化人类人工染色体构建的新方法》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-07-29
  • 在过去的20年中,科学家们一直在努力完善人类人工染色体(human artificial chromosome, HAC)的构建。在一项新的研究中,来自美国宾夕法尼亚大学的研究人员通过绕过形成天然染色体所需的生物学要求,描述了一种形成HAC的一个重要部分---着丝粒---的新方法。简言之,他们通过生化手段将一种称为CENP-A的蛋白直接运送到HAC DNA上,从而简化实验室中的HAC构建。相关研究结果发表在2019年7月25日的Cell期刊上,论文标题为“Human Artificial Chromosomes that Bypass Centromeric DNA”。

    论文通讯作者、宾夕法尼亚大学佩雷尔曼医学院生物化学与生物物理学教授Ben Black博士说道,“我们取得的进展简化了HAC的构建和表征,从而有助于人工制造全人类染色体。”

    HAC基本上作为新的微型染色体发挥作用,携带着一组经过改造的基因,它们可与细胞的天然染色体组一起遗传。生物工程师设想HAC执行各种任务,包括递送用于基因治疗的大分子蛋白,或者运输自杀基因来抵抗癌症。

    论文第一作者Glennis Logsdon说道,“想象我们构建的HAC是模型大小的染色体。通过能够以一种更直接的方式构建出HAC上的着丝粒,我们更接近于扩大到全尺寸的染色体。”

    在分裂过程中从来自母体细胞的HAC遗传到子细胞中是关键,这说明了着丝粒的重要性。着丝粒是在细胞发生分裂时将成对的“姐妹”染色体保持在一起的重复染色体的压缩区域。若没有它,整个染色体在细胞分裂期间会丢失。

    在细胞复制期间,人着丝粒并非简单地由DNA序列编码,这一点不同于多年来用于合成染色体研究的面包酵母。比如,哺乳动物依赖于CENP-A蛋白来指定染色体上的着丝粒位置,以便进行精确的细胞分裂。

    之前在试管中形成HAC着丝粒的尝试仅在它们“遇到”CENP-A时才会发生,而且这种不太可能发生的事件仅发生在HAC基因组的高度重复DNA序列上。Black说,“然而,高度重复DNA是分子生物学家的噩梦,这是因为利用我们如今拥有的方法研究它们是最为困难的,这是因为这些方法都是针对非重复DNA设计的。”

    Black团队通过将CENP-A直接运送给HAC DNA而完全绕过了重复DNA。他们的解决方法涉及“迫使”CENP-A与非重复DNA序列结合,以便形成HAC的新着丝粒。

    Black说道,“我们采用了我们的着丝粒绕过方法,从而制造出功能齐全的HAC,而且不会遭受过去二十年来重复着丝粒DNA给哺乳动物染色体工程师带来的克隆噩梦。基于我们的成功,我们和合成染色体领域的其他人如今将有机会获得迄今为止仅在酵母细胞中取得的成就。”

    这个合成生物学领域的下一步是将Black实验室构建的着丝粒与其他人设计的一组基因连接在一起。这个循序渐进的构建项目是人类基因组编写计划(Human Genome Project—Write, HGP-write)的目标:构建真实尺寸的合成染色体。Black团队的贡献将有助于加速构建基于合成染色体的有用的研究工具和临床工具。

  • 原文来源:https://linkinghub.elsevier.com/retrieve/pii/S0092867419306348
相关报告
  • 《科学家发现产生高温超导体的新方法》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2019-06-27
    • 20世纪80年代,铜氧化物高温超导体的发现推翻了一种广为流行的理论,即超导体材料仅在约30开尔文(或零下406华氏度)的极低温度下无电阻。几十年来,研究人员一直在关注100开尔文(零下280华氏度)以上的铜酸盐超导体研究。现在美国能源部劳伦斯伯克利实验室的科学家找到了这一问题的答案——电子自旋。相关成果将发表在12月13日的《科学》杂志上。 1、在旋转方式中添加电子自旋 每一个电子都像一个指向某个方向的微小磁铁。大多数超导体材料中的电子似乎都遵循着自己的旋转方向。它们的电子不是指向同一个方向,而是不规则地向某一个方向旋转——有的向上,有的向下,有的向左或向右。 当开发新的材料时,科学家们会观察材料的电子自旋。但是,当制造超导体时,凝聚态物理学家传统上并不关注自旋,因为传统观点认为这些材料的独特性是通过两个电子相互作用的方式,即“电子关联”形成的。但该研究用一种称为SARPES(s)的技术,发现一些超导体材料中存在电子自旋的特殊模式。 2、高温超导体的新图谱 材料在高于预期的温度下,或远低于零华氏度的极冷温度下出现超导,是因为只有在这样的条件下才能在没有任何阻碍地输送电子,此时电子能够同步运动,而不会被摇摆的原子撞击,进而产生电阻。在这类特殊的高温超导体材料中,铜酸盐的表现最好,一些研究人员相信,铜酸盐有可能成为制作新型超高效电线的材料。 凝聚态物理学家在研究的超导材料中发现了电子关联。其实还存在另一种电子相互作用方式,“自旋-轨道耦合”,即电子的磁矩与材料中的原子相互作用。许多人认为,与“电子关联相比”,铜酸盐超导体中的“自旋-轨道耦合”很弱,所以常常被忽略。 3、用SARPES发现电子自旋 SARPES探测器由Lanzara、Zahid Hussain和Chris Zzwiak共同开发。科学家用其探测电子的关键特性,如价带结构。科学家使用SARPES与ALS的10.0.1光束,探测到电子的自旋速度,发现bi-2212独特的自旋模式,即“非零自旋”。
  • 《纳米科学家开发了工程胶体晶体的新方法》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-06-22
    • 新材料有望用于检测和解毒环境中的有害化学物质,以及在医药和能源存储方面的应用 美国西北大学国际纳米技术研究所(IIN)的研究人员开发了一种新的纳米材料工程方法,这种材料被称为胶体晶体,使用具有独特特性的建筑材料,这可能会促进医学、能源和环境方面的进步。 这项研究发表在5月19日的《自然通讯》杂志上。 表面涂有核酸的纳米颗粒可以被编程并组装成被称为胶体晶体的有序阵列。其中一些晶体的结构与自然界中发现的其他固体类似,比如食盐,但其他晶体的结构没有天然的等价物。胶体晶体可以应用于光子学等领域。 金属-有机骨架已用于解决气体储存、药物传递、化学传感和催化等方面的问题。这些框架是由有机分子配合金属离子或团簇在多孔,多维晶体结构。 纳米颗粒形式的金属有机骨架(MOF NPs)具有类似的潜力,但由于其纳米尺度的大小,具有显著的优势。然而,MOF NPs作为胶体晶体构建块的有效性受到其尺寸不均匀性和稳定性差的限制。 在这项研究中,由Chad a . Mirkin和Omar K. Farha领导的IIN研究人员设计了一种方法来克服这一限制,提高MOF NPs的统一性。用离心机分离小范围和密度的颗粒后,这些MOF NPs被DNA进行化学修饰。然后,研究人员使用MOF NPs来设计胶体晶体超晶格,这些超晶格要么完全由MOF NPs组成,要么是MOF NPs和金属纳米颗粒的组合。 这些新材料不仅在检测某些环境中的有害化学物质方面很有前景,而且在清除它们方面也很有前景。例如,利用MOF的NP超晶格作为光催化剂,研究人员能够将芥子气的模拟物转化为无毒形式。 使用这种方法,二维阵列和三维超晶格可以以非凡的精度设计和制备,使开发能够收集光用于储能、感知分子或催化化学反应的材料成为可能。他们的研究也显示了MOF NP构造块的形状如何影响整体晶格的最终结构。 论文题为“金属有机框架纳米粒子与DNA的胶体晶体工程”。 米尔金,通讯作者,是IIN的创始人和主任,以及温伯格文理学院乔治·b·拉斯曼化学教授。 与IIN合作的还有温伯格文理学院化学系的合著者王顺志、Sarah S. Park、Cassandra T. Buru、林海欣和Farha;以及麦考密克工程学院的陈鹏程和埃里克·罗斯。