《宁波材料所研发出循环稳定磁制冷材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-06-20
  • 来源:中国科学院宁波材料所

    在当今能源材料中,利用固态相变进行能量转换的诸多材料体系都存在磁弹效应不明显、室温以上多铁性稀缺等主要问题,从而导致磁-热-机械三种能量形式相互干预的空间受限,借此提高转换效率的努力进入瓶颈阶段。开发出规避这些本征缺陷的新材料,发展新机理以实现多能量干预,有效提高转换效率和功能稳定性,是攻克此类能量转换难关的最有效途径。目前发现的磁弹强耦合相变材料包括稀土铁基化合物和镍基哈斯勒合金,基本具有多场可控相变的室温多铁性质,但功能的实现和性能的提高以极大牺牲磁场、温度和机械循环相变可逆性为代价,致使这类材料的实际应用受到阻碍。为解决功能和结构一体化难题,宁波材料所稀土磁性功能材料实验室一直致力于通过微观组织调控和先进制备加工技术,以获得支撑磁性和非磁性能的平衡要素点,如:采用高压光学浮区定向凝固方法生长出[001]方向单晶Co50Ni20Ga30合金,在上百次机械循环过程中保持了6 K的应力诱导温变(Scripta Mater., 2017, 127, 1);利用高温度梯度液态金属冷却定向凝固生长了[001]强织构Ni45Mn36.5In13.5Co5合金,在5%大应变下获得8K温变(Appl. Phys. Lett., 2017, 110, 021906);在Ni-Mn基Heusler合金中掺入稀土元素Tb或过渡族元素Cu,适当引入韧性第二相,提高了合金的断裂强度,而热效应降低不显著(J Alloys Compd., 2017, 696, 538; Scripta Mater., 2017, 130, 278),并系统研究了超弹性动力学参数和制冷效率的优化条件(Sci. Reports, 2017, 7, 2084)。

      最近,稀土磁性功能材料实验室与德国达姆斯塔特工业大学合作,制备了α-Fe/La-Fe-Si双相磁热材料,可以加工成比表面积大的片材,在后续的吸氢处理中仍能保持初始形状。所获得的双相氢化合物相比于单相合金,室温导热系数由2W/mK提升至6W/mK,并保持良好的磁热性能(1.9 T下绝热温变5.5 K)。更为重要的是,该种双相合金的三点弯曲强度为60 MPa,是聚合物粘接体的两倍,在经历105次磁场循环后仍能保持初始形状。该结果初步达到了高磁热、高导热和高强度的磁工质要求,发表在Acta Mater. (2017, 125, 506) 。

      此外,在磁性马氏体相变材料中,实验室研究人员与香港科技大学合作,提出了相变热与循环性质统一的研究策略:从立方到单斜型的可逆相变因其相变前后结构对称性差异大,相变潜热高,超弹区形变大,通过设计晶格和调节微观结构的相容性,在不牺牲其潜热和变形的同时提高此类材料的机械循环特性和功能可逆性,将其推向能量转化材料的应用前沿。通过成分优化获得了绝热温变高达13 K的巨弹热Ni50Mn31.5In16Cu2.5磁性形状记忆合金。原位劳厄X射线衍射实验结合马氏体非线性几何理论计算结果表明,孪晶马氏体二次对称轴的长度在可逆相变形变过程中保持不变,在变形张量作用下,第一型孪晶可以形成无应力界面层的相容三叉晶界,第二型孪晶可以形成无应力层的平行晶界,从而可保证相变界面完全相容的同时而允许无穷多可能的孪晶结构,相变过程中材料会自动协调形成特殊相容微观组织。这样不仅大大降低了原本的相变滞后,对于循环下材料功能性和可逆性都有着更显著的提高。因此,该合金的相变滞后达到3 K的低值,马氏体相变在105次磁场循环前后保持高度稳定。该工作为开发兼具巨热效应和高相变循环稳定性材料提供了理论支撑,结果发表在Acta Mater. (DOI:10.1016/j.actamat.2017.05.020)。

      以上研究得到国家自然基金委重点项目(51531008)和面上项目(51371184)的资助。

    NiMnIn基哈斯勒合金的马氏体形成、应力诱导热效应和磁场循环下的相变稳定性

相关报告
  • 《宁波材料所在探索高效磁制冷方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-21
    • 固态相变材料中,通过磁场、力场等外场的激励可以使热与磁、机械等能量形式进行相互转换,实现制冷。然而此类材料体系,诸如磁弹效应不足、多铁性稀缺等问题限制了热与其他形式能量的干扰,能量转化率不足使材料的应用进入瓶颈阶段。开发出规避这个本征缺陷的新材料,发展新机理以有效提高能量转换效率,是攻克此类能量转换难关的最有效途径。为解决功能和结构一体化难题,中国科学院宁波材料技术与工程研究所稀土磁性功能材料实验室一直致力于通过微观组织调控和先进制备加工技术优化,以获得支撑磁性和非磁性能的平衡要素点。镧铁硅作为典型的磁体积相变材料,磁场可以驱动热、磁和结构之间的能量转化,以实现巨磁热效应。 铸态镧铁硅在退火过程中,原子扩散反应的过程极慢,需要至少一周的退火时间才能形成镧铁硅1:13相。甩带和速凝作为常见的快速凝固方式,可以细化晶粒,从而缩短退火时间。这种制备方式获得的材料还具有组织和元素分布均匀的优点。宁波材料所稀土磁性功能材料实验室实现了高性能镧铁硅磁热材料的公斤化制备,批量生产的速凝片经过1天时间的退火,可基本获得纯相。速凝片破碎后通过聚合物粘接或金属热压成型,批量获得可用于制冷样机的块材或片材,对材料的规模化应用具有重大意义。另外,为了实现材料与系统换热流体之间更高效的热传输,团队基于快速凝固,分别利用落管法和熔体抽拉技术制备了高比表面积的微尺寸球颗粒和丝状材料,满足不同器件结构设计的需求。 在样机系统中,为实现低磁场驱动高磁热效应,需要设计低硅含量的材料成分。但低硅含量的单相成分在相图中区域极窄,很难合成。并且,较低硅含量的化合物需要更长的退火时间形成镧铁硅1:13相。团队通过相图精确定位,找到一种富稀土镧的非化学计量比成分范围。发现在该类成分内仅需要数小时即可快速形成镧铁硅主相,这将有利于缩短制备周期,节约批量化生产的成本。随后,研究人员利用扩散偶方法,对这种富稀土合金的相形成机理、相形貌和位相关系进行了系统研究,发现了一种二元La5Si3过渡相使得主相生长为层片状结构,减小了扩散距离,从而缩短退火时间。另外,主相的低硅含量也使得材料磁热性能有所提高,在较低的驱动磁场下即能实现高磁热性能,加速了其在制冷器件上应用的工业化进程。 在样机中,磁热材料的磁热效应伴随着周期性磁场驱动的磁结构相变产生。镧铁硅作为金属间化合物,其本征脆性难以克服,相变时体积的不断收缩膨胀也是对材料力学性能和服役周期的重大考验。另外,样机的制冷效率强烈依赖于材料与换热流体的热交换能力。团队在铸态合金中引入内生的第二相α-Fe,制备了α-Fe/La-Fe-Si双相磁热材料,可以加工成比表面积大的片材,在后续的吸氢处理中仍能保持初始形状。所获得的双相氢化合物相比于单相合金,室温导热系数升至三倍,并保持良好的磁热性能(1.9T下绝热温变5.5K)。更为重要的是,该种双相合金的三点弯曲强度为60MPa,是聚合物粘接体的两倍,在经历10万次磁场循环后仍能保持初始形状。该结果初步达到了高磁热、高导热和高强度的磁工质要求。 该系列工作可满足不同的应用需求,对材料的实用化具有重大意义。该系列工作刊登在金属材料领域权威期刊Acta Materialia118 (2016) 44-53,Acta Materialia125 (2017) 506-512和Acta Materialia 150(2018)206-212上。本研究得到国家自然基金委重点项目和面上项目,及浙江省自然基金委的支持。
  • 《宁波材料所开发出超黑光吸收涂层》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-08-31
    • 中国科学院宁波材料技术与工程研究所科研人员开发出一种超黑高稳定性的光吸收涂层技术,可应用于抑制光学器件中杂散光的干扰、提高太阳能光热转化效率等领域。   该涂层采用物理气相沉积技术,可在金属、陶瓷、高分子等绝大多数常用材料表面涂覆,甚至可以在柔性高分子薄膜表面涂覆,涂层结合力高,涂层的物理化学性能稳定、硬度高。   该涂层技术由中国科学院宁波材料所表面防护课题组研发完成,涂层为TiAlN三元陶瓷,在波长200nm到2500nm范围内的光吸收系数超过95%,覆盖近红外、可见光以及紫外,在现有陶瓷光吸收涂层中波长范围最宽、吸收率最高,但制备方法却非常简单。该涂层具有精巧的纳米结构,底层为层状结构,有利于提高其在各种基体材料上的附着力;中部为柱状结构,柱状界面可多次反射吸收光的能量;顶部为锥形结构,有利于入射光的导入。由于该涂层制备成本低,物理化学性能非常稳定,未来可在光学仪器杂散光控制、能量转换等领域广泛应用。   该工作成果发表在Journal of Materials Chemistry C, 2018,6, 8646-8662,Solar Energy, 2016, 138, 1–9。该技术已经申报发明专利2项(CN201210063873.8,DD180138I)。