《宁波材料所在探索高效磁制冷方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-01-21
  • 固态相变材料中,通过磁场、力场等外场的激励可以使热与磁、机械等能量形式进行相互转换,实现制冷。然而此类材料体系,诸如磁弹效应不足、多铁性稀缺等问题限制了热与其他形式能量的干扰,能量转化率不足使材料的应用进入瓶颈阶段。开发出规避这个本征缺陷的新材料,发展新机理以有效提高能量转换效率,是攻克此类能量转换难关的最有效途径。为解决功能和结构一体化难题,中国科学院宁波材料技术与工程研究所稀土磁性功能材料实验室一直致力于通过微观组织调控和先进制备加工技术优化,以获得支撑磁性和非磁性能的平衡要素点。镧铁硅作为典型的磁体积相变材料,磁场可以驱动热、磁和结构之间的能量转化,以实现巨磁热效应。

    铸态镧铁硅在退火过程中,原子扩散反应的过程极慢,需要至少一周的退火时间才能形成镧铁硅1:13相。甩带和速凝作为常见的快速凝固方式,可以细化晶粒,从而缩短退火时间。这种制备方式获得的材料还具有组织和元素分布均匀的优点。宁波材料所稀土磁性功能材料实验室实现了高性能镧铁硅磁热材料的公斤化制备,批量生产的速凝片经过1天时间的退火,可基本获得纯相。速凝片破碎后通过聚合物粘接或金属热压成型,批量获得可用于制冷样机的块材或片材,对材料的规模化应用具有重大意义。另外,为了实现材料与系统换热流体之间更高效的热传输,团队基于快速凝固,分别利用落管法和熔体抽拉技术制备了高比表面积的微尺寸球颗粒和丝状材料,满足不同器件结构设计的需求。

    在样机系统中,为实现低磁场驱动高磁热效应,需要设计低硅含量的材料成分。但低硅含量的单相成分在相图中区域极窄,很难合成。并且,较低硅含量的化合物需要更长的退火时间形成镧铁硅1:13相。团队通过相图精确定位,找到一种富稀土镧的非化学计量比成分范围。发现在该类成分内仅需要数小时即可快速形成镧铁硅主相,这将有利于缩短制备周期,节约批量化生产的成本。随后,研究人员利用扩散偶方法,对这种富稀土合金的相形成机理、相形貌和位相关系进行了系统研究,发现了一种二元La5Si3过渡相使得主相生长为层片状结构,减小了扩散距离,从而缩短退火时间。另外,主相的低硅含量也使得材料磁热性能有所提高,在较低的驱动磁场下即能实现高磁热性能,加速了其在制冷器件上应用的工业化进程。

    在样机中,磁热材料的磁热效应伴随着周期性磁场驱动的磁结构相变产生。镧铁硅作为金属间化合物,其本征脆性难以克服,相变时体积的不断收缩膨胀也是对材料力学性能和服役周期的重大考验。另外,样机的制冷效率强烈依赖于材料与换热流体的热交换能力。团队在铸态合金中引入内生的第二相α-Fe,制备了α-Fe/La-Fe-Si双相磁热材料,可以加工成比表面积大的片材,在后续的吸氢处理中仍能保持初始形状。所获得的双相氢化合物相比于单相合金,室温导热系数升至三倍,并保持良好的磁热性能(1.9T下绝热温变5.5K)。更为重要的是,该种双相合金的三点弯曲强度为60MPa,是聚合物粘接体的两倍,在经历10万次磁场循环后仍能保持初始形状。该结果初步达到了高磁热、高导热和高强度的磁工质要求。

    该系列工作可满足不同的应用需求,对材料的实用化具有重大意义。该系列工作刊登在金属材料领域权威期刊Acta Materialia118 (2016) 44-53,Acta Materialia125 (2017) 506-512和Acta Materialia 150(2018)206-212上。本研究得到国家自然基金委重点项目和面上项目,及浙江省自然基金委的支持。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=402186
相关报告
  • 《宁波材料所在低维拓扑量子材料探索方面获得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-04-08
    • 拓扑物态作为一种新的量子物态,包括拓扑绝缘体、拓扑半金属、及拓扑超导体等,是过去十多年来凝聚态物理领域最具吸引力的研究热点之一,拓扑物态的能带结构在倒空间具有拓扑结构,且其宏观物理性质如电输运、热输运等均由电子轨道波函数的拓扑性质决定。这类材料具有独特的量子性质,以拓扑绝缘体为例,它表现出与一般绝缘体完全不一样的量子现象与物性,如拓扑保护的表面态、反弱局域化、量子自旋/反常霍尔效应等。因为拓扑绝缘体的拓扑特性,在自旋电子学、低功耗电子器件以及量子计算机等领域有着广泛的应用前景。由于拓扑对称性保护,拓扑材料的拓扑量子数对局部缺陷和扰动相当不敏感,这就为拓扑材料在量子技术的可能应用提供了无与伦比的先天优势,也正因为如此,越来越受到研究者的高度关注和广泛研究。自从拓扑能带理论提出以后,在现实世界中探索新的拓扑材料就成为一个极具价值的工作。    由于热涨落和量子涨落效应随维度的降低而显著增加,具有低维结构的材料常常具有许多新颖的物理特性和应用前景。近年来发现的大部分拓扑材料都具有二维或三维的结构特征,而具有准一维结构的拓扑材料比较少见。中国科学院宁波材料技术与工程研究所量子功能材料团队何少龙研究员课题组近期在低维三元碲化物的奇异量子性质研究中发现了一种新的拓扑半金属材料TaPtTe 5 。课题组对TaPtTe 5 的电输运、Hall和磁阻进行了细致测量和分析,并利用低温磁化率测量研究了该材料的de Haas-van Alphen(dHvA)量子震荡,量子震荡和数据分析结果如图1所示,提取到的两个震荡频率都对应非平庸的贝里相位,第一性原理的能带结构如图2所示,计算的拓扑指数也证实了它是一种弱拓扑的狄拉克半金属材料,该材料是课题组成员继TaPdTe 5 ( Phys. Rev. B,2020,102,075141 )和TaNiTe 5 ( J. Phys. Chem. Lett.,2020,11,1172 )等低维拓扑半金属材料之后在该体系中发现的又一个新拓扑材料,考虑到这类材料的层状低维结构和稳定性,它的发现为拓扑材料的研究和可能应用提供了又一个理想平台。    近期该工作以“Anisotropic transport and de Haas-van Alphen oscillations inquasi-one-dimensionalTaPtTe 5 ”为题发表在 Phys. Rev.B,2020,103, 125150 (DOI:10.1103/PhysRevB.103.125150) 。该工作得到国家重点研发计划(2017YFA0303002)、国家自然科学基金(11674367、11974364、U2032207、11974061)、浙江省自然科学基金(LY19A040002)等的支持。
  • 《宁波材料所在低维量子功能材料电子结构研究方面获得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-28
    • 自从石墨烯被发现以来,二维材料由于具有迷人的特性和广泛的应用前景而得到了研究者的关注。受到石墨烯的不寻常特性与其平面蜂窝状结构密切相关的启发,目前已有许多二维蜂窝状材料,如硅烯、锗烯和磷烯等,得到了广泛的研究。然而,大多数已报道的二维蜂窝状材料是由p电子元素组成的,而由d电子元素组成的二维蜂窝状材料却很少见。许多具有d电子的过渡金属元素可以以自旋极化磁性离子的形式存在。因此,利用过渡金属的二维蜂窝状材料有望于实现二维磁性,它们是二维铁磁体的强力候选者。   第一个过渡金属的蜂窝状结构是生长在Ir(111)衬底上的铪烯。同许多其它过渡金属的单层蜂窝状材料类似,理论预言,铪烯于其布里渊区的K点具有狄拉克锥型的电子结构以及可能具有铁磁特性。不过,也有一些理论计算认为,铪烯的狄拉克锥型电子结构可能会被Hf原子和衬底Ir原子之间的比较强的相互作用所淬灭,其铁磁特性也会被抑制。因此,利用角分辨光电子能谱(ARPES)观测铪烯的电子结构的直接实验证据就显得很重要,可以解决以上理论计算的争议。   中国科学院宁波材料技术与工程研究所量子功能材料团队何少龙课题组肖绍铸等人利用角分辨光电子能谱(ARPES)直接测量了在衬底Ir(111)上生长的铪烯(hafnene)的电子结构。研究发现,在费米能级附近,Ir衬底上的铪烯(hafnene)的电子结构是简单的位于布里渊区Γ点的抛物锥型电子口袋(electron pocket),如文末图所示,可以视为二维电子气的能带结构,电子有效质量为1.8 me,电子气密度为7 × 1014 cm-2。结合理论计算分析,研究人员认为,自旋轨道耦合(SOC)和铪原子的较强的Hubbard相互作用的存在抑制了先前理论预测的狄拉克锥型电子结构;铪烯中的铪原子和衬底的铱原子之间的相互作用淬灭了铪烯中的大部分能带,以致幸存的能带为二维电子型的能带。此研究结果具有两方面的重要意义:一方面,hafnene/Ir(111)界面出现的二维电子气型能带结构为与衬底有相互作用的强耦合二维系统的电子结构提供了新的见解;另一方面,为了探索铪烯的本征电子结构,需要通过更换衬底或者采取类似石墨烯研究中通常采用的插层方法来避免衬底的影响。此研究为基于铪烯以及其它过渡金属蜂窝状材料的潜在器件应用提供了关键信息。   该工作以“Direct evidence of two-dimensional electron gas-like bandstructures in hafnene”为题发表在Nano Research期刊上,并被选为封底文章(线上版本链接:https://rdcu.be/cDjcc)。该工作得到国家重点研发计划(2017YFA0303600、2020YFA0308800)、国家自然科学基金(11974364、11674367、U2032207、92163206、11974045、61725107)、浙江省自然科学基金(LZ18A040002)、宁波市自然科学基金(2018B10060)和宁波3315项目的支持。