引言
钠离子电池由于具有显著的成本优势和环境优势而适用于大规模电网储能系统。为了满足大规模储能器件的要求,需要研发兼具高能量密度及可持续性的钠离子电池材料。目前常用于钠离子电池正极材料的层状金属氧化物虽然具有高的能量密度,但循环稳定性差,对空气敏感;而聚阴离子作为钠离子电池正极材料则具有较好的循环稳定性,但其能量密度仅处于中等水平。与此相比,基于有机化合物的正极材料由于可以从生物质材料出发经简单的加工获得而具有价格上的优势,但如何提高其能量密度及长循环稳定性仍是一个极大的挑战。
在众多有机电极材料中,玫棕酸钠(Na2C6O6)作为极具前景的钠离子电池正极材料具有较高的理论比容量(501 mAh/g)及长循环稳定性,并能从植物中提取的肌醇出发并以较低的成本制得。但玫棕酸钠作为钠离子电池正极材料的可逆容量远低于其理论容量,并在首次循环过程中伴随着明显的容量衰减,理论上预期的四电子过程在实际中很难实现,而导致上述现象的深层原因却不得而知。
成果简介
近日,斯坦福大学的鲍哲楠教授和崔屹教授(共同通讯作者)等共同揭示了玫棕酸钠(Na2C6O6)作为钠离子电池正极材料的主要限制因素。该研究表明,充放电过程中Na2C6O6会在α-Na2C6O6与γ-Na2C6O6之间发生相变,该相变的可逆性决定了Na2C6O6正极的可逆容量及长循环稳定性。由于充电(脱钠)过程中由γ-Na2C6O6转变为α-Na2C6O6的相变过程需要克服较大的活化能,该相变通常呈现出高度的不可逆性,严重制约了Na2C6O6正极的电化学性能。为了解决这一问题,可以通过减小Na2C6O6的晶粒尺寸并选取合适的电解质溶液的方法降低该相变的活化能垒,使充放电过程中α-Na2C6O6与γ-Na2C6O6之间的相变具备高度可逆的特征,实现了在每个Na2C6O6晶胞中可逆储存4个钠原子的储钠机制,从而实现了高的可逆容量及循环稳定性。电化学测试表明,当选取溶剂化作用强的二甘醇二甲醚(DEGDME)作为电解质溶液时,纳米Na2C6O6正极能达到484 mAh/g的可逆容量及726 Wh/kg的能量密度(基于Na2C6O6正极),其能量效率高达87%,并具有较高的容量保持率。该Na2C6O6正极的比能量高达其理论值的96.6%,并超过了之前报导的所有钠离子电池正极材料。这一发现为构建可持续型高性能大规模储能体系点亮了曙光。该研究成果以“High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate”为题,发表在Nature Energy上,该工作的第一作者为斯坦福大学化学工程学院的Minah Lee博士后。