《我国科研人员在下一代锂电池研究方面取得突破性进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-04-21
  • 记者17日从中国科学院获悉,我国科研人员在下一代锂电池研究方面取得突破性进展。他们发现,富锂锰基正极材料在受热时会自动收缩,这种特性竟能帮助老化的电池恢复电压,让旧电池“返老还童”。这一发现不仅揭示了该材料的工作机制,更为研发更耐用、可自我修复的下一代锂电池提供了全新方向。相关研究成果在线发表于《自然》杂志。

    要解决电动汽车、电动航空器的“续航焦虑”,就必须发展下一代高比能锂电池技术。科学家们盯上了富锂锰基正极材料,用它做成的电池,储电能力能比现有电池提升30%,就像把油箱容量直接扩大30%,加上锰元素比钴镍便宜,所以这种材料堪称既强又实惠的“六边形战士”。

    但富锂锰基正极材料作为一种氧活性正极材料,在实际使用中还存在一个严重的问题:经过多次充放电后,富锂锰基电池的电压会逐渐下降,出现老化现象。

    在这项研究中,科研人员揭示了富锂锰基正极材料的有趣性质:它在受热时反而收缩。适当加热,就能让该材料从无序状态恢复到更稳定、能量更低的有序结构,导致电池体积缩小,从而表现出“遇热收缩”的特性。“基于此,我们找到了一种新方法,通过电化学手段让老化的富锂锰基电池实现‘逆生长’。”论文共同通讯作者、中国科学院宁波材料技术与工程研究所研究员刘兆平说。

  • 原文来源:https://www.nengyuanjie.net/article/113542.html
相关报告
  • 《研究人员在如何分解木质纤维素方面取得突破性进展》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2018-01-02
    • 在马萨诸塞州,一项新研究的发现揭示了特定微生物用来分解木质纤维素的一些基本工具。这项工作提供了关于工业过程如何在生物燃料生产过程中实现退化的见解,以及如何利用诸如制氢等方面的过程。 在缺乏氧气的情况下,可以使用木质素来促进生长的一种候选物种是一种从热带雨林土壤中分离出来的细菌。马萨诸塞大学阿姆赫斯特分校的一组研究人员;圣玛丽亚大学位于智利瓦尔帕莱索;而EMSL,环境分子科学实验室对E进行全基因表达分析。用下一代测序进行转录组分析的lignolyticus SCF1。在木质素的情况下,对生长在三种不同时期的细胞进行了实验。与木质素的培养基在没有木质素的培养基中获得了两倍的细胞生物量,并降低了60%的木质素。 在木质素经修正的条件下,与木质素的化学结构相一致的酶的补充。此外,与木素降解产物的氢化反应也暗示了未来木素降解的可能价值。 ——文章发布于2017年12月22日
  • 《青岛储能院在下一代高能锂电池电解液和黏结剂领域取得阶段性进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-12-10
    • 市场和消费者对电动汽车和便携式电子产品的续航里程的高度关注,驱动着锂离子电池能量密度的不断提升。提升锂离子电池能量密度最常用的策略是开发新型高电压高容量正极材料(如镍锰酸锂,高电压钴酸锂,高电压三元材料等)或高容量的负极材料(如硅碳材料)。但是,这些新型电极材料与传统电解液、黏结剂的兼容性差,难以形成稳定的界面,成为制约下一代高能锂离子电池的商业化进程瓶颈问题之一。依托青岛能源所建设的青岛储能产业技术研究院(简称“青岛储能院”)将下一代高能锂离子电池及其配套电解液和黏结剂的研究作为主攻研究领域之一。   众所周知,电解液是锂离子电池的“血液”,高性能电解液的开发及电极/电解液界面形成机制的研究将极大地提高下一代高能锂离子电池的性能。受传统中医药方和西医“药物协同联用”思想的启发,青岛储能院深入发展 “电解液功能添加剂协同联用”策略,实现大幅提升下一代高能锂离子电池性能目标,如高电压钴酸锂/石墨全电池体系(Energy Technology, 2017, 5, 1979-1989)和5V高电压镍锰酸锂/石墨全电池体系(Advanced Energy Materials, 2018, 8, 1701398)。 这些研究工作虽然对添加剂的协同作用机制做出了具有指导性的解释,但局限于非原位技术手段表征,可能无法反映出电极/电解液界面反应的真实状态。近年来,原位表征技术的发展为高性能电解液的开发及电极/电解液界面形成机制的研究注入了新的活力。气体是电极/电解液界面反应的重要产物,确定气体产物并结合界面固态产物表征分析将实现对电极/电解液界面反应的有效解析,而原位差分电化学质谱法(in-situ DEMS)因能够实时监测定量电池在不同电位下的产气行为而备受关注。青岛储能院采用in-situ DEMS(Hiden, HPR-20和HPR-40)和理论计算相结合的方法,研究电解液添加剂对高容量硅碳负极中电解液/电极界面反应的影响,并成功构建5V高电压镍锰酸锂/硅碳全电池体系,这对电解液功能添加剂的发展和界面研究的深入具有重要指导意义,相关工作以“Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-ion Battery System”为题目发表在Chemistry of Materials (2018, 30, 8291-8302)。另外,青岛储能院还自主开发新型具有大阴离子结构的全氟叔丁氧基三氟硼酸锂(LiTFPFB)作为电解液主盐(Chemical Science)。   锂离子电池电极中黏结剂用量非常少,却作用关键,但在研究中容易被忽视。聚偏氟乙烯(PVDF)是正极材料最常用的黏结剂。近年来研究发现,PVDF在高电压工作条件下不稳定,是下一代高能锂电池性能衰减的一个重要原因。青岛储能院采用含有大量苯酚基团的可再生木质素作为新型功能黏结剂用于5V高电压镍锰酸锂正极材料,该新型正极材料的循环性能得到大幅提高。经充分的实验论证发现,木质素黏结剂中的苯酚基团可以消除电解液中的自由基并终止自由基的链式反应,从而抑制电解液的氧化分解,构建高稳定性的电解液/电极界面,该工作对高电压正极材料黏结剂的开发具有里程碑式的指导意义,相关工作以“A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries”为题目在线发表在Energy & Environmental Science (2018, DOI: 10.1039/c8ee02555j)。   青岛储能院在下一代高能锂离子电池及其配套电解液和黏结剂的研究领域所取得的成绩得到国际同行的高度认可,应邀撰写关于5V高电压镍锰酸锂电池的综述(Chemistry of Materials, 2016, 28, 3578-3606);电解液阻燃剂的综述(储能科学与技术,2018, 6(7), 1040-1059);关于高电压钴酸锂电池的综述(Chemical Society Reviews, 2018, 47, 6505-6602);关于三元正极材料聚合物电解质的综述(Electrochemical Energy Reviews,2018,已接收);关于高性能黏结剂的综述(Energy Storage Materials, 2018, DOI: https://doi.org/10.1016/j.ensm.2018.11.013)一系列文章。   相关系列研究获得了国家自然科学基金相关人才计划,国家重点研发计划,中国科学院纳米先导专项,青岛市储能行业科学研究智库联合基金,国家自然科学基金青年科学基金,山东省自然科学基金,青岛能源所“一三五”项目等的大力资助。