《突破 | 柔性有机太阳能电池领域取得新进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-04-27
  • 近日,《美国化学会志》(Journal of the American Chemical Society)以“Realizing 17.5% Efficiency Flexible Organic Solar Cellsvia Atomic-Level Chemical Welding of Silver Nanowire Electrodes”为题(DOI:10.1021/jacs.2c01503),在线报道了苏州大学李耀文教授在可印刷银纳米线柔性透明电极(FTE)可控生长及高效柔性有机太阳能电池(FOSCs)构筑取得的重要研究进展。

    近年来,FOSCs因其质量轻、可溶液加工、具有可弯曲性等优点引起了科研工作者的广泛关注,并获得了飞速发展。然而,FOSCs的效率较基于玻璃基底制备的刚性电池仍有较大差距,主要原因是基于塑料基底制备的柔性透明电极在面电阻、透过率及可加工性等方面受到了局限。银纳米线(AgNWs)作为新一代高导电率、高透过率、耐弯折的材料已被广泛的应用于柔性电子设备的柔性电极中。但是由于溶液加工的AgNWs之间较差的接触以及与基底之间较弱的粘附力,使得FTE通常表现出较高的粗糙度和较差的导电及机械性能,严重影响了FOSCs的器件性能。基于此,苏州大学李耀文教授等人针对上述问题,提出了“可控还原—化学焊接”策略,通过向银纳米线溶液中引入具有还原性的离子液体(图1a)和硝酸银并与嵌有银纳米线(Em-Ag)的聚对苯二甲酸乙二醇酯(PET)基底相结合,使被还原的银以孪晶生长方式焊接在AgNWs的结点,实现AgNWs和还原银之间原子级接触。这有助于在不牺牲光学透过率的情况下增强AgNWs的物理/电学接触,提高FTE的机械性能和导电性能。基于该FTE制备的FOSCs实现了效率的大幅度提升,以PM6:BTP-eC9:PC71BM为活性层的小面积器件(0.062 cm2)效率达到了17.52%。重要的是,这种FTE的制备方法适用于大尺寸印刷,采用刮涂方法制备的1 cm2 FOSCs的PCE高达15.82%。

    图1. (a)离子液体的结构式;(b-c)不同反应时间析出物的照片和XRD谱图,其中*和#分别为AgCl和Ag的特征峰;(d) PET/Em-Ag/AgNWs-IL FTE的SEM图像:白色框表示部分嵌入在PET衬底上的AgNWs,黄色框表示在AgNWs的结点处形成的颗粒

    图2 (a)AgNWs结点FIB切割过程示意图;(b)AgNW结点的透射电镜剖面图和(c)EDS图谱;(d)图2b中标记区域1的透射电镜截面放大图像;(e)左:图2b中标记区域2的透射电镜截面放大图像;右:所选区域的HR-TEM图像

    图3.(a)制备AgNWs FTE流程示意图;(b)Em-Ag/AgNWs-IL FTE(不含衬底)在不同浓度离子液体时的方块电阻、电导率和(c)透过光谱。附图: FTE在10 cm × 10 cm尺度下的照片;(d)FTE的FoM值

    图4. (a)FOSCs结构示意图以及给体PM6与受体Y6、BTP-eC9和PC71BM的分子结构;(b)小面积FOSCs的J-V曲线;(c)大面积柔性透明电极透过率及面电阻均一性;(d)1cm2 FOSCs的J-V曲线;(e)FOSCs效率统计分布图

    图5.(a)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-ILFTE的方块电阻随弯曲次数增加的变化趋势。插图:弯曲试验示意图;(b)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-IL FTE在剥离力作用下方块电阻的变化。插图:剥离试验示意图;(c)0.062-cm2 FOSCs经过6000次弯曲之后的PCE衰减;(d)0.062-cm2 FOSCs在1200次不同弯曲半径下弯曲循环后的相对PCE衰减;(e)1-cm2 FOSCs经过6000次弯曲的PCE衰减过程。插图: FOSCs在弯曲时的照片

    综上所述,该工作在AgNWs结点实现了Ag+的可控还原,银纳米线与被还原银颗粒之间获得了原子级别的物理接触,在银纳米线间形成了“银纳米线—还原银—银纳米线”导电通道,制备的FTE同时具有高的电导率和透光率。相关研究工作对于推动高性能银纳米线电极的商业化有重要的意义,并有望进一步促进高性能、大面积柔性光电器件的发展。

相关报告
  • 《突破 | 宁波材料所在高效率柔性钙钛矿太阳能电池领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-10
    • 随着光伏技术的快速发展,具有高效率和低成本特性的钙钛矿太阳能电池(PSCs)受到了越来越多的关注,未来具有替代传统晶硅电池的潜力,尤其是柔性钙钛矿太阳能电池(f-PSCs)在光伏建筑(BIPV)、分布式发电、便携式设备充电等领域具有广阔的应用前景,成为当前光伏领域研究的热点。然而到目前为止,柔性钙钛矿太阳能电池所取得的光电转换效率(PCE)仍旧落后于基于导电玻璃的刚性器件,这主要是由于在柔性衬底上沉积均匀和高质量的钙钛矿薄膜具有很大挑战。 为了解决这一问题,中国科学院宁波材料技术与工程研究所葛子义研究员领导的有机光电材料与器件团队通过自下而上的策略,对电子传输层与钙钛矿层之间的界面进行修饰,向电子传输层中预埋3-氨基丙酸氢碘酸盐(3AAH),进而在锚定钙钛矿晶粒生长的同时还提升了电子传输层的质量。通过这种方法,钙钛矿薄膜在退火-冷却过程中产生的残余拉伸应力被有效释放,并转化为微压应力,钙钛矿体缺陷与界面处缺陷密度显著降低,所制备的柔性钙钛矿太阳能电池性能得到了大幅度提升,获得了23.4%的优异光电转换效率,也是目前国际上报道的柔性钙钛矿电池最高效率之一。另外,机械耐弯折性能也得到显著提高,在弯曲半径为5毫米、循环弯曲4000次后仍可以保持初始PCE的84%以上。这一策略为弥补柔性和刚性器件之间光电转换效率的差距提供了一个新的思路,推动了柔性钙钛矿太阳能电池的产业化应用研究。 图(a)预埋3AAH的柔性钙钛矿太阳能电池器件结构以及J-V特性曲线;(b) 柔性器件在曲率半径为5mm下的机械耐弯折性能
  • 《突破 | 北京理工大学在高效率铸态有机太阳能电池的研究中取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-09-23
    • 溶液处理有机太阳能电池(OSCs)是一种有潜力的绿色光电转化技术,其在光伏建筑一体化,柔性可穿戴设备领域展现出巨大的应用潜力。器件效率、稳定性和成本是有机光伏商业应用的三个最关键的因素,而在成本方面的研究相对落后于前两者。从材料角度来看,简化分子结构,合成步骤与提纯过程是降低器件成本的有效策略。在器件制备方面,铸态OSCs即活性层不进行任何工艺优化,其无疑是降低成本最有效的方案。然而,从分子设计的角度构筑高效率铸态器件还鲜有报道。在这项工作中,该团队通过逐个增加吡咯单元上亚甲基碳的个数,设计和合成了五个A-DAD-A型小分子(A1-A5)受体材料,以此为基础研究具有不同链长度的小分子受体与铸态器件之间的构效关系。 随着烷基链的延长,薄膜的吸收光谱从A1到A5逐渐发生蓝移,同时最低未占据分子轨道(LUMO能级)也略微上移。 随着LUMO能级的略微上移,有利于实现器件的短路电流密度和开路电压之间的平衡。此外,较长的烷基链还能提高受体和给体之间的相容性。通过原位紫外-可见吸收光谱(图2)结果分析表明,良好的相容性将会延长分子自组装时间,并有助于给体相的优先形成,进而受体沉淀在由给体形成的框架中。相应的成膜过程有助于形成具有合适纤维结构、分子堆叠和垂直相分离的薄膜形貌,从而提高填充因子。因此,基于D18:A3的铸态器件实现了18.29%的最高效率。在该工作中,该团队从分子设计角度,提出了一种构筑高效率铸态器件的有效策略,并明晰了材料结构-成膜过程-器件性能之间的关系,有助于推动有机光伏领域的产业化发展。 图1. (a) A1-A5的化学结构。(b) D18和A1-A5的归一化薄膜吸收光谱。(c) A1-A5在室温下在氯仿中的溶解度。(d) D18和A1-A5的能级。(e) A1-A5纯薄膜在IP和OOP方向上的线切割轮廓。(f) D18和受体的分子间作用力。(g) D18与不同分子之间的堆积模型 图2.A1-3的原位紫外-可见吸收光谱、一维吸收光谱曲线和最大吸收峰位随时间变化曲线