《生物物理所等研发出修补线粒体损伤的小分子融合激动剂》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-01-16
  • 1月12日,中国科学院生物物理研究所胡俊杰团队与南开大学陈佺团队、中国科学院昆明植物研究所郝小江团队合作,在Nature Chemical Biology上,发表了题为Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction的研究论文。该研究报道了一种能够特异性激活MFN1并修补多类线粒体损伤的小分子化合物S89。

    线粒体是调控细胞能量稳态和命运决定的中心。线粒体通过不断融合和分裂以维持正常功能,而分裂与融合失衡导致的线粒体过度碎片化是人类诸多疾病与衰老的重要标志之一。介导线粒体融合和分裂的分子机器均为发动蛋白(dynamin)超家族成员,其中线粒体外膜融合由线粒体融合素(MFN1和MFN2)执行。MFN2的突变导致腓骨肌萎缩症(CMT2A)等多种遗传性神经退行性疾病。因此,研发可促进线粒体融合的小分子化合物将有助于线粒体相关疾病的治疗,是生命科学和生物医学研究备受关注的前沿方向。

    经过筛选,科研团队发现绣线菊提取天然产物的一种衍生物S89具有促进线粒体融合的功效。同时,该反应只在表达内源MFN1的细胞中有效。研究利用纯化MFN的体外实验表明,S89直接结合于MFN1第二个螺旋束(HB2)内的一个较松散区域。该区域在自然状态下与GTP酶相结合,可将分子锁定在无法激活的自抑制状态,而S89和HB2的结合竞争性解除该自抑制。同样,HB2松散区域的特定位点突变或GTP的结合也可解开MFN1的自抑制。总体来说,S89的处理可以将全长MFN1的酶活提升2倍左右,也可有效促进纯化MFN1在体外的融合活性。值得注意的是,同源蛋白MFN2由于自抑制效应较强,S89对其无效。

    进一步,该团队利用多种细胞模型(MELAS综合症患者细胞、CMT2A患者细胞、氧化应激诱导剂百草枯及铁死亡诱导剂RLS3处理的细胞)验证了S89的生物学效应,发现了S89可以通过延伸线粒体、减少线粒体去极化、缓解线粒体氧化应激、增加线粒体ATP产量等修补线粒体功能损伤。此外,研究还发现,S89在再灌注时的注射可以减轻小鼠缺血再灌注对心肌产生的损伤。

    这一针对S89机制的研究揭开了线粒体外膜融合调控的神秘面纱。S89的功效具有可逆和可控等特点,为具有多个同源基因的相关遗传病治疗提供了全新的干预思路,即对于存在MFN2突变的缺陷可以通过进一步激活内源的健康MFN1来扭转。由于线粒体碎片化在多种病理病变中普遍存在,因而对线粒体融合能力的可控提升将颇具应用前景。

    研究工作得到国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项(B类)、中国科学院稳定支持基础研究领域青年团队计划等的支持。

  • 原文来源:https://www.cas.cn/syky/202301/t20230113_4872175.shtml
相关报告
  • 《昆明植物所在小分子促进线粒体融合并修补线粒体损伤的新机制研究中取得进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-11
    • 粉花绣线菊复合群包含七个变种,为我国特有。在早期的化学与生物学研究基础上,中国科学院昆明植物研究所郝小江团队开展了其特征性二萜及二萜生物碱的生物功能挖掘,相继揭示了部分化学成分可促进线粒体融合、特异性抑制Wnt信号通路、通过非Bax/Bak依赖的线粒体途径诱导细胞凋亡、抑制原癌基因Fli-1表达等新颖作用机制。日前,与南开大学陈佺团队、中国科学院生物物理研究所胡俊杰团队合作,在 Nature Chemical Biology 以长文(Article)形式在线发表题为Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction的研究论文,该研究报道了绣线菊二萜生物碱的一种衍生物S89能够特异性激活线粒体融合蛋白MFN1并修补多类线粒体损伤。该研究被Science作为研究热点予以报道。   线粒体是调控细胞能量稳态和命运决定的中心,可通过不断融合和分裂维持其正常功能,其中线粒体融合蛋白1(MFN1)和MFN2是介导线粒体外膜融合的动力蛋白样GTP酶。而线粒体分裂与融合失衡导致的过度碎片化是人类诸多疾病与衰老的重要标志之一,如MFN2的突变导致腓骨肌萎缩症(CMT2A)等多种遗传性神经退行性疾病。   该研究以线粒体融合的筛选体系为基础,合成并筛选了数十个该类衍生物,发现S89可直接靶向MFN1,并通过MFN1而不是MFN2促进GTP水解和线粒体融合。S89分子通过缓解MFN1自身抑制作用,并在MFN2缺陷时增强内源性MFN1的活性,从而恢复CMT2A患者来源细胞的线粒体功能。S89还通过防止线粒体损伤保护小鼠心脏组织免受缺血/再灌注损伤。因此,促进线粒体融合的小分子化合物将有助于治疗线粒体相关疾病,如代谢、免疫和神经系统疾病等,是生命科学和生物医学研究备受关注的前沿方向。   南开大学陈佺教授,中国科学院生物物理研究所胡俊杰研究员,中国科学院昆明植物所郝小江院士为本文共同通讯作者。陈佺团队的郭英杰博士,胡俊杰团队的张欢博士、沈璧蓉博士,郝小江团队的晏晨博士为本文共同第一作者。研究工作得到国家自然科学基金、国家重点研发计划、中国科学院战略性先导科技专项(B类)、中国科学院稳定支持基础研究领域青年团队计划等的支持。
  • 《Kidney Int |上海药物所合作揭示肾小管损伤的线粒体稳态失衡新分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2021-11-29
    • 急性肾损伤(Acute kidney injury, AKI)是一种急性肾功能紊乱,主要以血浆肌酐和尿素氮明显增加,同时尿输出量明显降低为特点。AKI已成为世界范围内的一个公共卫生问题,荟萃分析表明全球成人住院患者急性肾损伤的发生率为21.6%,即每5个成年住院患者,就有1个住院期间发生急性肾损伤;而每5个急性肾损伤患者,就有1个住院期间发生死亡。中国住院患者急性肾损伤的检出率为0.97%,因AKI而导致的死亡率为16.5%。不幸的是,面对如此严峻的AKI流行病学现状,当前并没有能够明显改善AKI、或增强肾脏修复功能以缓解AKI进展至慢性肾病(Chronic kidney disease, CKD)的干预手段或治疗药物。   肾小管上皮细胞主要由线粒体脂肪酸β氧化供能,易受缺氧、缺血等病理性条件影响。目前已发现在多种因素导致的AKI中,肾小管内线粒体结构与功能发生显著病理性变化。线粒体生物合成以及损伤后的线粒体自噬流是肾小管损伤修复的关键环节,但学界对缺血再灌注引起的线粒体自噬和稳态失衡调控模式认知匮乏,极大限制了肾小管损伤的修复策略与保护措施。   中国科学院上海药物研究所李静雅研究团队,长期致力于探索代谢性疾病中的线粒体稳态失衡分子机制。近年来,针对营养诱导的疾病模型肝组织与脂肪组织中线粒体生物合成的调节失衡,开展调控机制以及干预策略研究,相关学术论文发表于 Cell Metabolism(2021)、Diabetes(2019&2021)、Cell Death & Disease(2019)和Frontiers in Physiology(2018)等期刊。谢岑研究团队围绕代谢紊乱相关疾病,以多组学分析为主要技术手段,从肠道微生态、胆汁酸、脂质代谢等不同角度研究疾病发生发展中的组织器官互作机制,相关学术论文发表于Hepatology(2021)、Nature Medicine(2017&2018)、Cell Metabolism(2017)、Nature Communications(2015)等期刊。   2021年11月11日,上海药物所李静雅课题组、谢岑课题组,联合复旦大学药学院沈晓燕研究团队,在Kidney International期刊在线发表了标题为Dephosphorylation of AMP-activated kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction的研究成果。研究发现,肾小管损伤应激会导致脂质代谢紊乱与神经酰胺合成通路过度活化,阐明了肾小管细胞内神经酰胺通过激活蛋白磷酸酯酶PP2A去磷酸化AMPK,揭示了再灌注过程中AMPK去活化是介导线粒体自噬损伤与肾小管细胞凋亡的重要病理机制。团队在此基础上提出靶向AMPK可改善缺血再灌注引起的肾小管损伤与凋亡作用,为急性肾损伤的预防和治疗提供了潜在药物靶标与干预手段。   该项研究中,科研人员通过非靶向脂质组学和RNA-seq技术,发现缺血再灌注(I/R)后肾脏组织内线粒体脂肪酸氧化代谢受损及神经酰胺大量蓄积。肾脏内神经酰胺蓄积导致的 PP2A过度激活,使AMPK去活化与线粒体稳态失衡和脂质代谢损伤显著相关。为确证AMPK在I/R导致AKI的关键机制,科研人员构建了AMPKα1/α2肾小管条件性敲除小鼠,发现肾小管内AMPK敲除显著加剧I/R引起的线粒体自噬损伤、抑制线粒体生物合成,最终损伤线粒体的脂肪酸氧化功能。最后,研究人员采用自主研发的AMPK变构激活剂考察对I/R导致AKI的保护作用,发现C24可显著改善I/R后的线粒体稳态失衡、提高线粒体质量控制、保护肾小管细胞凋亡,最终改善肾脏内的能量代谢平衡。   综上,该项研究阐述了AMPK去磷酸化是I/R导致AKI的关键病理机制(图1),靶向激活AMPK促进线粒体稳态可有效缓解I/R引发的肾小管损伤,为临床预防和治疗AKI提供新的策略与干预途径。   复旦大学博士研究生马海建、上海药物所博士后郭小珍和崔仕超,为本文共同第一作者。上海药物所李静雅研究员、谢岑研究员及复旦大学药学院沈晓燕教授,为本文共同通讯作者。该工作得到国家自然科学基金委、国家重大科技专项、国家重点研发计划及上海市自然基金委等项目的资助。特别感谢上海药物所李佳研究员、南发俊研究员,复旦大学附属中山医院丁小强教授在课题研究中给予的鼎力支持与宝贵建议。   全文链接:https://doi.org/10.1016/j.kint.2021.10.028