《Kidney Int |上海药物所合作揭示肾小管损伤的线粒体稳态失衡新分子机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2021-11-29
  • 急性肾损伤(Acute kidney injury, AKI)是一种急性肾功能紊乱,主要以血浆肌酐和尿素氮明显增加,同时尿输出量明显降低为特点。AKI已成为世界范围内的一个公共卫生问题,荟萃分析表明全球成人住院患者急性肾损伤的发生率为21.6%,即每5个成年住院患者,就有1个住院期间发生急性肾损伤;而每5个急性肾损伤患者,就有1个住院期间发生死亡。中国住院患者急性肾损伤的检出率为0.97%,因AKI而导致的死亡率为16.5%。不幸的是,面对如此严峻的AKI流行病学现状,当前并没有能够明显改善AKI、或增强肾脏修复功能以缓解AKI进展至慢性肾病(Chronic kidney disease, CKD)的干预手段或治疗药物。

      肾小管上皮细胞主要由线粒体脂肪酸β氧化供能,易受缺氧、缺血等病理性条件影响。目前已发现在多种因素导致的AKI中,肾小管内线粒体结构与功能发生显著病理性变化。线粒体生物合成以及损伤后的线粒体自噬流是肾小管损伤修复的关键环节,但学界对缺血再灌注引起的线粒体自噬和稳态失衡调控模式认知匮乏,极大限制了肾小管损伤的修复策略与保护措施。

      中国科学院上海药物研究所李静雅研究团队,长期致力于探索代谢性疾病中的线粒体稳态失衡分子机制。近年来,针对营养诱导的疾病模型肝组织与脂肪组织中线粒体生物合成的调节失衡,开展调控机制以及干预策略研究,相关学术论文发表于 Cell Metabolism(2021)、Diabetes(2019&2021)、Cell Death & Disease(2019)和Frontiers in Physiology(2018)等期刊。谢岑研究团队围绕代谢紊乱相关疾病,以多组学分析为主要技术手段,从肠道微生态、胆汁酸、脂质代谢等不同角度研究疾病发生发展中的组织器官互作机制,相关学术论文发表于Hepatology(2021)、Nature Medicine(2017&2018)、Cell Metabolism(2017)、Nature Communications(2015)等期刊。

      2021年11月11日,上海药物所李静雅课题组、谢岑课题组,联合复旦大学药学院沈晓燕研究团队,在Kidney International期刊在线发表了标题为Dephosphorylation of AMP-activated kinase exacerbates ischemia/reperfusion-induced acute kidney injury via mitochondrial dysfunction的研究成果。研究发现,肾小管损伤应激会导致脂质代谢紊乱与神经酰胺合成通路过度活化,阐明了肾小管细胞内神经酰胺通过激活蛋白磷酸酯酶PP2A去磷酸化AMPK,揭示了再灌注过程中AMPK去活化是介导线粒体自噬损伤与肾小管细胞凋亡的重要病理机制。团队在此基础上提出靶向AMPK可改善缺血再灌注引起的肾小管损伤与凋亡作用,为急性肾损伤的预防和治疗提供了潜在药物靶标与干预手段。

      该项研究中,科研人员通过非靶向脂质组学和RNA-seq技术,发现缺血再灌注(I/R)后肾脏组织内线粒体脂肪酸氧化代谢受损及神经酰胺大量蓄积。肾脏内神经酰胺蓄积导致的 PP2A过度激活,使AMPK去活化与线粒体稳态失衡和脂质代谢损伤显著相关。为确证AMPK在I/R导致AKI的关键机制,科研人员构建了AMPKα1/α2肾小管条件性敲除小鼠,发现肾小管内AMPK敲除显著加剧I/R引起的线粒体自噬损伤、抑制线粒体生物合成,最终损伤线粒体的脂肪酸氧化功能。最后,研究人员采用自主研发的AMPK变构激活剂考察对I/R导致AKI的保护作用,发现C24可显著改善I/R后的线粒体稳态失衡、提高线粒体质量控制、保护肾小管细胞凋亡,最终改善肾脏内的能量代谢平衡。

      综上,该项研究阐述了AMPK去磷酸化是I/R导致AKI的关键病理机制(图1),靶向激活AMPK促进线粒体稳态可有效缓解I/R引发的肾小管损伤,为临床预防和治疗AKI提供新的策略与干预途径。

      复旦大学博士研究生马海建、上海药物所博士后郭小珍和崔仕超,为本文共同第一作者。上海药物所李静雅研究员、谢岑研究员及复旦大学药学院沈晓燕教授,为本文共同通讯作者。该工作得到国家自然科学基金委、国家重大科技专项、国家重点研发计划及上海市自然基金委等项目的资助。特别感谢上海药物所李佳研究员、南发俊研究员,复旦大学附属中山医院丁小强教授在课题研究中给予的鼎力支持与宝贵建议。

      全文链接:https://doi.org/10.1016/j.kint.2021.10.028

  • 原文来源:http://www.simm.ac.cn/web/xwzx/kydt/202111/t20211129_6273562.html
相关报告
  • 《Nat Commun | 上海药物所合作揭示内皮素受体多肽识别选择性的分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-03-09
    •   内皮素(Endothelin,ET)是一类由21个氨基酸组成的内源性多肽激素,包括ET-1,-2和-3三种亚型,由氨基段、羧基端和中部的α螺旋区组成(图1a)。ET-1是已知最强且作用最为持久的血管收缩肽之一。ETs通过作用于内皮素受体(ETRs)调节人体多种重要的生理和病理过程。ETRs由ETAR和ETBR两种亚型组成,属于典型的A类G蛋白偶联受体。在被ET-1激活后,ETAR和ETBR呈现相反的血管调节作用:ETAR激活导致长时间的血管收缩效应,而ETBR则介导血管扩张。内皮素系统对于维持血管稳态中发挥着重要作用,与多种器官系统的血管疾病密切相关,是治疗心血管系统疾病的重要靶标之一。   ETs对两种ETRs亚型表现出不同的亲和力,其中ETAR对ET-1和ET-2表现出相当级别的亲和力(亚纳摩尔),但对ET-3的亲和力弱100倍,而三种ETs对ETBR 的亲和力相同。IRL1620是一种ETs多肽类似物,但其序列不含ETs的氨基段,可以高选择性地激活ETBR(图1b),目前在临床研究中被应用于缺血性脑卒中、癌症的辅助治疗等。目前尚无针对ETAR亚型的结构研究,因此多肽识别ETAR的机制,以及两种ETRs亚型对不同内源多肽和多肽类药物的精确选择性机制尚不明确,这也是内皮素及其受体研究领域的重要科学问题之一。   2023年3月7日,中国科学院上海药物研究所徐华强团队联合临港实验室蒋轶研究员、中国科学院上海药物研究所/中山药物创新研究院段佳研究员共同在Nature Communications发表了最新的研究成果“Structural basis of peptide recognition and activation of endothelin receptors”。本研究利用冷冻电镜技术解析了内源性配体ET-1结合于ETAR/ETBR-Gq复合物的结构,选择性激动剂IRL1620结合于ETBR-Gi复合物的结构,分辨率分别为3.0埃,3.5埃和3.0埃(图1c-e)。   该研究展示了ETRs激活的构象特征,表明ETRs对ET-1/-2/-3保守的识别机制。ETs的羧基末端插入ETRs的配体结合口袋对ET-1所诱导的ETRs激活至关重要。ETs的羧基末位残基W21与“Toggle switch”残基W6.48的直接相互作用触发了家族性ETRs的激活。科研人员进一步从结构的视角对ETRs的配体选择性进行了阐述,提出两种受体亚型在结合口袋大小和受体胞外表面的静电电势的差异决定了配体对ETRs多肽的识别选择性。该研究成果在分子层面上揭示了ETRs与配体相互作用的机制,加深了对ETRs的激活以及对配体的选择性的理解,为设计靶向特定ETRs亚型的药物奠定了结构基础。   本研究中的冷冻电镜数据由上海药物所高峰电镜中心收集。上海药物研究所硕士研究生纪语婕、段佳研究员、袁青宁为该论文的共同第一作者。徐华强研究员、蒋轶研究员、段佳研究员为共同通讯作者。该项工作获得了国家自然科学基金委、科技部重点研发计划、上海市科技重大专项等项目的资助。   全文链接:https://www.nature.com/articles/s41467-023-36998-9
  • 《Immunity:上海药物所合作揭示CD4+T细胞中新的DNA感知通路及其介导衰老相关自身免疫病的调控机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-09
    • 人口老龄化是世界面临的重大社会问题。随着年龄增大,正常机体会表现为衰老的状态,而免疫系统的衰老是其中突出和重要的问题,也是老年个体易发慢性炎症与自身免疫疾病的重要原因。T细胞介导的适应性免疫是机体诱发自身免疫性炎症的关键驱动力,虽然衰老引起的胸腺萎缩会导致初始T细胞输出减少,然而老年个体外周T细胞的数量并没有减少,原因是由于外周T细胞在衰老的状态下会发生稳态增殖(homeostatic proliferation)与活化,进而促进炎症的发生发展。然而,衰老诱导T细胞稳态增殖进而促进自身免疫性炎症发生发展的具体调控机制尚不清楚。   衰老会促进细胞内与循环系统中游离DNA的增加,而对自身DNA的反应会增加机体诱发自身免疫性疾病的风险,如果细胞质中降解DNA的酶(如Trex1、Dnase I或DNase II)的基因缺失,则会使小鼠诱发自发的全身性自身免疫炎症。同样人类DNASE1或TREX1的功能丧失突变(loss-of-function mutation)也与部分人群的自身免疫性疾病有关。因此,衰老诱导的DNA积累可能是其自身免疫发展的关键所在。此外,有研究表明T细胞去除后可显著抑制Trex1基因敲除小鼠自发的自身免疫性炎症和死亡,提示T细胞可能在调节DNA诱导的自身免疫中的潜在作用。   2021年3月4日,中国科学院上海营养与健康研究所肖意传课题组与中国科学院上海药物研究所郑明月研究员合作在Immunity 期刊上发表了研究论文 Cytoplasmic DNA sensing by KU complex in aged CD4+ T cell potentiates T cell activation and aging-related autoimmune inflammation 。该研究揭示KU复合物介导CD4+T细胞中的DNA感知,进而介导衰老相关自身免疫病的调控机制。   在本研究中,研究人员发现在老年小鼠和人的CD4+T细胞胞质中存在DNA大量累积的现象,且这些积累的DNA会促进TCR诱导的CD4+T细胞的增殖与活化,并促进小鼠自身免疫性炎症的发生发展,说明T细胞自身会通过DNA感知促进其功能活化。固有免疫细胞中DNA的感知主要依赖于cGAS/STING系统,进而通过激活IRF3介导I性干扰素的产生。进一步研究发现,CD4+T细胞中cGAS的表达水平非常低,因此DNA的增加并不会促进cGAS/STING下游IRF3的激活与I性干扰素的产生。研究人员接着通过质谱结合免疫印迹技术发现T细胞中细胞质DNA并不与cGAS,而是与KU复合物(KU70/KU80)进行结合。如果利用小分子抑制剂STL127705阻断KU复合物与DNA的结合,则显著抑制了DNA诱导的CD4+T细胞的增殖与活化,进而缓解了老年小鼠自身免疫性炎症的发生发展,说明DNA诱导的T细胞功能活化确实是通过KU复合物感知DNA介导的。通常情况下,KU复合物与DNA依赖的蛋白激酶的催化亚基(DNA-PKcs)一起介导细胞核中的DNA损伤修复。而本研究发现KU复合物在T细胞的细胞质中大量表达,其感知CD4+T细胞质中积累的DNA后促进了DNA-PKcs的磷酸化激活,进而介导了ZAK的T169位点的磷酸化,ZAK再通过磷酸化AKT激活下游mTOR通路,从而增强了CD4+T细胞的增殖和活化。因此,CD4+T细胞中KU复合物介导的DNA感知通路的激活是导致老年小鼠自身免疫性炎症的发生发展的关键机制。   为了探索干预这一新发现的DNA感知通路进而抑制衰老相关自身免疫性炎症的治疗策略,研究人员利用热量限制(CR)或模拟间歇性进食(FMD)处理老年小鼠,发现这两种节食模式都能显著降低老年小鼠CD4+T细胞的DNA损伤和细胞质DNA累积,从而抑制了ZAK-T169位点的磷酸化以及下游AKT/mTOR信号的激活,最终抑制了CD4+T细胞的活化和衰老相关自身免疫病症状。进一步研究表明,基于DNA感知通路中鉴定到的关键蛋白激酶ZAK,研究人员利用深度学习结合分子模拟的方法从大约13万个化合物库中筛选获得了可特异性抑制ZAK激酶活性的小分子化合物iZAK2,发现iZAK2可有效地抑制DNA诱导的CD4+T细胞增殖活化,由此缓解了老年小鼠自身免疫病的病理症状。   综上所述,该研究揭示了衰老CD4+T细胞中不依赖于cGAS/STING的DNA感知信号通路,其可促进T细胞的活化和增殖并导致衰老相关自身免疫病的发生发展。进一步研究和开发阻断T细胞中DNA感知信号传导的抑制剂可能有利于临床治疗衰老相关的自身免疫性疾病。   上海营养与健康研究所博士生王艳为该论文的第一作者,肖意传研究员和上海药物所郑明月研究员为论文的共同通讯作者。   原文链接:https://doi.org/10.1016/j.immuni.2021.02.003