《新发现有助于更好地了解海洋吸收大气CO2的能力》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-03-06
  • 海洋是地球系统中最大的碳库。自工业革命以来,人类活动排放的二氧化碳约有三分之一被海洋吸收。了解控制海洋和大气之间碳交换的过程是预测二氧化碳对气候变化、海洋酸化、海洋生物和社会未来影响的关键。
    巴塞罗那自治大学环境科技研究所(Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona,ICTA-UAB)领导的一项研究发现,大气和海洋之间的碳交换受到一组独特的光合作用浮游生物的高度调节,这种浮游生物被称为球石藻。这些生活在海洋阳光照射层中的常见微生物形成了碳酸钙矿物,并且在海洋CaCO3的生产中占主导地位。
    球石藻是微小的藻类,其尺寸小于百分之一毫米,是水生食物网的基础,通过钙化和光合作用调节大气中的CO2水平。研究表明,球石藻占海洋表层CaCO3总产量的90%,在控制海洋化学和CO2方面发挥着关键作用。该研究强调了另外两个主要的浮游生物钙化类群(即浮游动物(翼足类)和有孔虫)在调节大气CO2方面的次要作用。大部分CaCO3并没有沉入深海,而是在接近海面的地方溶解,在那里碳更容易与大气交换。这种广泛的浅层溶解现象解释了卫星观测/生物地球化学模型得出的CaCO3产量与浅层沉积物颗粒沉降估计值之间的明显差异。这一发现表明浅层CaCO3溶解驱动过程是了解浮游钙化物在调节大气CO2中的关键作用。大量CaCO3在海洋表面溶解表明海洋和大气之间的碳交换比我们最初想象的要复杂得多。在更好地了解驱动这种浅层溶解的过程之前,很难预测未来海洋将如何吸收碳。(张灿影  编辑)

  • 原文来源:https://www.uab.cat/web/newsroom/news-detail/new-finding-provides-better-understanding-of-oceans-capacity-to-absorb-atmospheric-co2-1345830290613.html?detid=1345881805069
相关报告
  • 《Cell Rep:疟疾领域新发现有助于HIV的治疗》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-22
    • 根据最近一项研究,来自澳大利亚研究人员发现免疫系统对疟疾感染作出的反应可能有助于开发针对丙型肝炎,艾滋病毒和狼疮的新型治疗方法。 研究者们通过实验室模型发现,由疟疾感染引起的强烈炎症信号激活了特定分子,这些分子触发了抵抗疾病的高效抗体的产生。相关结果发表在《Cell Reports》杂志上。 Hansen博士和她的团队在过去的十年中一直在探索宿主免疫系统如何应对疟疾感染。“在我们以前的论文中,我们证明了炎症信号激活了阻止辅助性T细胞发育的分子,这意味着B细胞没有获得制造抗体的必要指令。当我们开始这项研究时,我们期望看到炎症也对B细胞产生了负面影响。事实上,我们发现情况恰恰相反。炎症信号传给B细胞进而提高了抗体的质量。” Hansen博士说,她希望这一发现将在疟疾之外发挥作用。她说:“我认为这项发现提供了治疗慢性病毒感染和自身免疫性疾病的机会。我们已经确定了驱动免疫系统产生强效抗体的分子'开关',以及影响其功能的炎症信号。针对该分子或同一途径中的其他分子,可以提供治疗这些疾病的精密手段”。 在包括疟疾和病毒感染(如HIV和慢性丙型肝炎)在内的慢性感染中,产生非常高质量的有效抗体对于清除感染至关重要。另一方面,能够产生针对自身抗原(人体自身的蛋白质和组织)的抗体的B细胞则是导致自身免疫性疾病,例如狼疮的根本原因。 “我们希望能够创造出能够“开启”炎性分子信号的疫苗或疗法,以帮助产生这些高质量的B细胞以更好地抵抗慢性感染,或者“关闭”自身免疫性疾病中的相同分子以停止生产自身免疫性B细胞,从而治疗狼疮等自体免疫疾病”。
  • 《过去十年海洋环流促进海洋吸收CO2》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:zhoubz
    • 发布时间:2017-02-16
    • 过去十年间,海洋吸收的CO2越来越多,导致更少的温室气体抵达大气层。这绝对是个好消息,但是带来的问题是:海洋中CO2浓度的增加导致了海洋酸化,阻碍一些海洋生物碳酸外壳的形成。海洋吸收CO2能力的增加以及对气候变化的影响一直以来都是个未解之谜。最近加州大学圣芭芭拉分校地理学家Timothy DeVries主导的研究结果表明海洋翻转环流的放缓可能是催化剂,该研究成果已发表在《自然》期刊上。 DeVries研究小组编辑分析了三个十年阶段的现有的海洋示踪数据,包括温度、盐度、氯氟烃(一种融入海洋的人造气体)和C-14,并将其分为三个十年阶段:1980年代、1990年代和2000年代。研究人员利用计算机的数据分析结果描绘了海洋环流的特征,即每个时间阶段海水从海洋表面转移到深海,再循环到海洋表面。同时分析了每个环流模式下海洋气-碳交换以及海洋碳循环情况。 “海洋吸收二氧化碳的能力随着不同年代环流变化而改变,模型显示1990年海洋吸收二氧化碳的能力骤然下降,而在2000年有了较大提升” ,DeVries解释道,“而且这种变动直接跟海洋环流的变化有关”。DeVries认为这个发现似乎违反直觉,因为主流科学认为随着海洋表层的变暖,环流的减速会降低海洋吸收二氧化碳的能力。尽管这是事实,但是短期内有另外一种影响似乎更为重要,即弱化的翻转环流只能携带少量富含二氧化碳的深海水到海洋表面,这就限制了大量的二氧化碳返回到大气层,从而导致海洋能够从大气中吸收更多的二氧化碳。 相对于上世纪90年代,本世纪初海洋二氧化碳吸收量得到增加。Tim DeVries等人报道,本世纪初海洋大尺度循环(环流)相比上世纪90年代来得要弱(特别是在海洋上层),因而减少了海洋深处富含二氧化碳的海水向海洋表层的流动。这种效应外加上人为造成二氧化碳排放量的上升,增加了大气和海洋之间的二氧化碳浓度梯度,促进了海洋对二氧化碳的吸收。温度引起二氧化碳溶解度变化的影响不及海洋循环驱动效应的十分之一。鉴于本世纪初所观察到的海洋二氧化碳吸收的大部分变化都可以通过海洋循环和大气二氧化碳浓度变化加以解释,海洋生物学过程很可能在这里只取到有限的一点作用。 这些研究结果表明,生物学过程在2000年以来的海洋碳吸收增加上不太可能取到主要作用。这并不意味着海洋生物学过程对环流变化保持不变,只是这些变化可能对碳吸收的净影响相对有限。例如,海洋上层环流的减少可能会导致表层海洋营养供应的减少,从而降低二氧化碳的生物学吸收,而在混合层深度(海洋表层与风较好混合的深度)的温度驱动变化可能会影响光照,潜在影响二氧化碳生物学吸收。在过去的十年中,这些海洋碳汇变化净影响可能是有限的,但这些变化可能会影响海洋生物群落结构。此外,如果能够用模型准确地描述这些生物学过程,对预测其它海洋气候影响以及未来海洋碳吸收是非常重要的。 目前用于评估全球碳吸收的和模拟地球对气候变化的响应的这一代模型并没有完全捕捉观察到的年代际变化,这说明我们评估当代碳预算和预测未来变化方面还存有相当大的差距。因此,虽然Tim DeVries等人的工作对我们理解海洋碳吸收趋势而言是一大进步,但到目前为止尚不清楚这种2000年以来观察到的海洋碳吸收增加现象还将持续多久。至于未来会怎样,尚需要更详细的机制研究。 附图:影响海洋碳汇功能的各项因素 (张灿影、周伯柱 编译)