《微生物所合作研究揭示稻田土壤二甲基砷脱甲基机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-08-31
  •   近日,中国科学院微生物研究所东秀珠研究团队与南京农业大学赵方杰团队合作在The ISME Journal发表了题为“Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease”的文章,研究揭示了稻田土壤中DMAs脱甲基的功能微生物及脱甲基途径与机制,为防控水稻“直穗病”提供理论依据。

      研究团队首先发现甲基营养型产甲烷古菌具有DMAs的脱甲基能力(图1A),且产甲烷马赛球菌Methanomassiliicoccus是优势产甲烷古菌(图1B)。随后,从甲基营养型富集液中分离得到一株H2依赖型的甲基营养型产甲烷古菌Methanomassiliicoccus luminyensis CZDD1,(图1C)添加菌株CZDD1显著加速了富集液中DMAs脱甲基过程(图1D)。

      随后,本研究将具有DMAs脱甲基能力的产甲烷马赛球菌CZDD1与梭菌共培养液添加至水稻土中,降低了水稻对DMAs的积累,有效缓解了水稻“直穗病”(图2)。

      中国科学院微生物研究所助理研究员李凌燕和南京农业大学资环学院副教授陈川为该文章共同第一作者,中国科学院微生物研究所东秀珠研究员和南京农业大学赵方杰教授为本文共同通讯作者。本项目研究得到了国家自然科学基金和中央高校基础科研经费的资助。

      文章链接:https://www.nature.com/articles/s41396-023-01498-7.

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202308/t20230830_6868870.html
相关报告
  • 《稻田土壤铁-氮耦合的微生物机制取得重要进展》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2014-12-18
    •   稻田土壤是一种典型的人工湿地系统,其周期性的干湿交替导致了系列的氧化还原反应。由于稻田土壤的这一特性以及丰富的铁(Fe)含量,异化Fe(III)还原现象普遍存在于淹水稻田土壤中,并被认为可调控其他元素的生物地球化学过程。施氮(N)肥(尿素或氨)是人们为了维持稻田土壤肥力和增加水稻产量的一种重要农业管理措施。已有研究表明,在其他生境,如湿地和热带森林土壤中发现异化Fe(III)还原与N元素循环之间存在联系,然而人们对稻田土壤中微生物介导的异化Fe(III)还原与N元素循环相耦合的过程知之甚少。   鉴于稻田土壤在全球农业生产和生态环境功能中的突出地位,中科国学院生态环境研究中心朱永官课题组对我国稻田土壤中的Fe-N耦合过程进行了一系列研究。首先,他们选取我国南方第四纪红土母质发育的稻田土壤,通过室内泥浆厌氧培养手段,以13C-乙酸盐为底物,分别添加水铁矿和针铁矿作为唯一末端电子受体,采用基于rRNA的稳定性同位素探针(rRNA-SIP)结合基于16S rRNA的454高通量测序技术,研究了长期施N肥(尿素)对稻田土壤中依赖于乙酸盐同化的Fe(III)还原微生物群落的影响。他们首次揭示了长期施N肥能够促进稻田土壤中Fe(III)还原过程以及改变依赖于乙酸盐的Fe(III)还原细菌的群落结构。此外,他们还发现尽管不同形态的铁矿对Fe(III)还原细菌的类群具有选择性,水铁矿和针铁矿的添加均刺激了两种土壤中Geobacter属的增长,且长期施氮肥导致其增长幅度更大。这些结果暗示着长期施N肥在微生物介导的稻田土壤Fe的生物地球化学循环中的重要性,强调了元素生物地球化学循环之间复杂的相互作用。这一研究成果发表在自然出版集团的The ISME Journal(Ding et al., ISME J., 2014, DOI: 10.1038/ismej.2014.159)上。随后,他们以一个第四纪红土母质发育的时间序列稻田土壤为对象,采用基于15N-NH4+(15NH4+)的稳定性同位素示踪以及乙炔(C2H2)抑制技术,首次证明了稻田土壤中存在铁氨氧化过程,即在厌氧条件下,以Fe(III)为电子受体,Fe(III)被还原为Fe(II)的同时铵(NH4+)被氧化为氮气(N2),或亚硝酸盐(NO2–),或硝酸盐(NO3–)的过程(图1),其中,直接生成N2是稻田土壤中铁氨氧化过程的主要途径。此外,他们还发现水稻耕作可提高土壤微生物可还原Fe(III)水平,促进铁氨氧化反应,从而刺激土壤中N损失,通过估算发现铁氨氧化过程造成的N损失约占我国氨肥田间施用量的3.9–31%,推测此过程是稻田土壤N损失的潜在重要途径之一,可能影响到对陆地生态系统氮素损失的估算。这一研究成果发表在Environmental Science and Technology(Ding et al., Environ. Sci. Technol., 2014b, DOI: 10.1021/es503113s)上。
  • 《微生物所揭示铜绿假单胞菌甲基化趋化受体蛋白WspA的小片段缺失导致超级生物被膜形成的机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-10
    • 生物被膜(Biofilm)是微生物生存的主要形式。生物被膜相关研究是微生物学领域的前沿之一,在基础生命科学和医疗、工业、农业、环境治理等应用科学领域均具有至关重要的研究意义。铜绿假单胞菌具有很强的环境适应性,可以在水体、土壤、原油等多种环境中生存。同时铜绿假单胞菌也是一种条件致病菌,易形成生物被膜,是生物被膜研究的模式菌株之一。已有研究发现铜绿假单胞菌存在一类褶皱型小菌落突变株(Rugose small colony variants, RSCVs),可以形成致密、厚实的超级生物被膜(hyper-biofilm)。超级生物被膜的形成导致突变株耐药性大幅增强,易于逃脱宿主的免疫清除,临床预后较差。此外超级生物被膜的形成也有助于细菌抵御环境中的生存压力,可以在营养贫瘠的环境中维持生存。然而关于超级生物被膜菌株形成机制尚待解析。         中国科学院微生物研究所马旅雁团队对石油分离的两株铜绿假单胞菌进行了全基因组测序,分析发现两株菌株基因组高度同源(identity>99.99%),但其中一株表现为形成超级生物被膜的小菌落皱褶表型。SNP分析结合分子生物学验证揭示该菌甲基化趋化受体蛋白WspA的小片段缺失是导致菌株超级生物被膜形成的原因。WspA蛋白是Wsp系统中的信号感应受体蛋白,通过甲基化或去甲基化两种修饰形态决定着Wsp系统的激活或关闭。WspA第280-307氨基酸残基片段的缺失导致该蛋白将Wsp系统锁定在持续激活的状态。Wsp系统在铜绿假单胞菌中通过调控胞内第二信使cyclic-di-GMP的合成从而协调细菌运动和生物被膜形成,Wsp系统的持续激活导致了胞内cyclic-di-GMP的持续积累,从而抑制细菌运动,促进胞外多糖的合成,形成超级生物被膜。此外,马旅雁团队通过Orbitrap对WspA蛋白的甲基化位点进行鉴定,发现在WspA有小片段缺失的280-307氨基酸区域存在两个甲基化位点E280和E297。推测甲基化位点的缺失导致WspA蛋白无法被甲基化和去甲基化修饰,从而导致Wsp系统被锁定在持续激活的状态。WspA同源蛋白序列比对显示在发生氨基酸片段缺失(aa280-313)的区域有三个保守的重复序列,表明相应DNA编码区域内的自发缺失可能是基因内部片段重组的结果。该重复序列在几个相关的菌属和生境类似的细菌的WspA中均存在,提示了类似突变发生的普遍性。WspA的小片段缺失在临床分离的RSCV中也很常见。该研究结果阐明了铜绿假单胞菌超级生物被膜形成的机制以及该菌在特殊环境中获得竞争优势的原因。         综上,该研究揭示了甲基化趋化受体蛋白WspA通过小片段丢失的方式,激活cyclic-di-GMP的合成,从而导致菌株形成超级生物被膜的机制,为防治和控制超级生物被膜相关问题提供理论依据及可能的解决办法。本研究工作以马旅雁课题组博士生徐安明为第一作者,王迪副研究员为第二作者,马旅雁研究员为通讯作者,于2022年3月发表在Environmental Microbiology杂志上。本研究得到了微生物所刘双江团队和李德峰团队的合作与帮助。该项研究得到了国家自然科学基金水圈重大研究计划、国家重点研发计划的支持。