《稻田土壤铁-氮耦合的微生物机制取得重要进展》

  • 来源专题:农业立体污染防治
  • 编译者: 金慧敏
  • 发布时间:2014-12-18
  •   稻田土壤是一种典型的人工湿地系统,其周期性的干湿交替导致了系列的氧化还原反应。由于稻田土壤的这一特性以及丰富的铁(Fe)含量,异化Fe(III)还原现象普遍存在于淹水稻田土壤中,并被认为可调控其他元素的生物地球化学过程。施氮(N)肥(尿素或氨)是人们为了维持稻田土壤肥力和增加水稻产量的一种重要农业管理措施。已有研究表明,在其他生境,如湿地和热带森林土壤中发现异化Fe(III)还原与N元素循环之间存在联系,然而人们对稻田土壤中微生物介导的异化Fe(III)还原与N元素循环相耦合的过程知之甚少。

      鉴于稻田土壤在全球农业生产和生态环境功能中的突出地位,中科国学院生态环境研究中心朱永官课题组对我国稻田土壤中的Fe-N耦合过程进行了一系列研究。首先,他们选取我国南方第四纪红土母质发育的稻田土壤,通过室内泥浆厌氧培养手段,以13C-乙酸盐为底物,分别添加水铁矿和针铁矿作为唯一末端电子受体,采用基于rRNA的稳定性同位素探针(rRNA-SIP)结合基于16S rRNA的454高通量测序技术,研究了长期施N肥(尿素)对稻田土壤中依赖于乙酸盐同化的Fe(III)还原微生物群落的影响。他们首次揭示了长期施N肥能够促进稻田土壤中Fe(III)还原过程以及改变依赖于乙酸盐的Fe(III)还原细菌的群落结构。此外,他们还发现尽管不同形态的铁矿对Fe(III)还原细菌的类群具有选择性,水铁矿和针铁矿的添加均刺激了两种土壤中Geobacter属的增长,且长期施氮肥导致其增长幅度更大。这些结果暗示着长期施N肥在微生物介导的稻田土壤Fe的生物地球化学循环中的重要性,强调了元素生物地球化学循环之间复杂的相互作用。这一研究成果发表在自然出版集团的The ISME Journal(Ding et al., ISME J., 2014, DOI: 10.1038/ismej.2014.159)上。随后,他们以一个第四纪红土母质发育的时间序列稻田土壤为对象,采用基于15N-NH4+(15NH4+)的稳定性同位素示踪以及乙炔(C2H2)抑制技术,首次证明了稻田土壤中存在铁氨氧化过程,即在厌氧条件下,以Fe(III)为电子受体,Fe(III)被还原为Fe(II)的同时铵(NH4+)被氧化为氮气(N2),或亚硝酸盐(NO2–),或硝酸盐(NO3–)的过程(图1),其中,直接生成N2是稻田土壤中铁氨氧化过程的主要途径。此外,他们还发现水稻耕作可提高土壤微生物可还原Fe(III)水平,促进铁氨氧化反应,从而刺激土壤中N损失,通过估算发现铁氨氧化过程造成的N损失约占我国氨肥田间施用量的3.9–31%,推测此过程是稻田土壤N损失的潜在重要途径之一,可能影响到对陆地生态系统氮素损失的估算。这一研究成果发表在Environmental Science and Technology(Ding et al., Environ. Sci. Technol., 2014b, DOI: 10.1021/es503113s)上。

相关报告
  • 《“稻田土壤氮保留和氮损失影响因素及驱动机制”方面取得成绩》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-10-22
    •     水稻作为全球近一半人口的主粮,全球种植面积超过1.55亿公顷。氮素(N)一直是限制水稻产量的关键因素,我国水稻氮肥年投入量630万吨,约占全球水稻氮肥用量的三分之一。稻田土壤中各氮素转化过程的速率决定了土壤氮素水平的高低。然而目前稻田土壤N保留以及N损失速率的大尺度分布规律及驱动因素尚不明晰。     为了回答上述问题,南京土壤所研究员颜晓元团队采集了全国主要稻区的土壤样品,研究了全国水稻土壤中自生生物固氮、反硝化、厌氧氨氧化(Anammox)、硝酸盐异化还原成铵(DNRA)以及净N2排放速率的空间变异规律及其关键影响因素。研究结果表明,稻田土壤可能是自生生物固氮的热区,其潜势比DNRA潜势高出10倍。经度、有机碳浓度以及固氮微生物群落组成和多样性是影响自生生物固氮潜势的关键因素。宏基因组组装基因组(MAGs)预测生物固氮代谢途径发现固氮基因nifH与反硝化相关基因(nirS/K和nosZ)以及有机碳氧化相关基因(yiaY和galM)具有显著共现性,表明固氮微生物在稻田土壤中具有异养能力。由于生物固氮是一个高耗能的过程,固定一个氮气分子需要16个ATP,在厌氧条件下,自生固氮菌可以利用硝酸盐作为厌氧呼吸的末端电子受体,通过结合有机碳氧化获得能量。上述结果表明有机碳氧化与硝酸盐还原耦合对增强稻田土壤自生生物固氮具有重要作用。     与自生生物固氮速率分布不同,稻田N2排放速率没有显著的区域差异,但是不同水稻种植方式显著影响了N2排放速率。水旱轮作和单季稻土壤的N2排放速率显著高于双季稻土壤。除此之外,稻田土壤N2排放速率与土壤pH之间呈单峰关系,N2O还原菌和土壤性质是调节区域N2排放速率差异的主要因素。稻田土壤nosZ Clade I和Clade II中具有显著的生态分化,而土壤pH是驱动其群落组成变化的关键因素。具体而言,在水旱轮作种植下,土壤水分和pH显著影响了nosZ Clade I型反硝化菌的丰度和组成,而在双季稻种植模式下,土壤质地和pH是影响nosZ Clade II型反硝化菌的丰度和组成的主要因素,从而驱动了N2损失。这些发现加深了我们对稻田生态系统 N2损失动态的理解,强调了N2O 还原微生物在稻田N2损失中的关键作用,表明平衡 N2O还原过程和 N2O产生过程可能是未来减缓N2O排放和减少N2损失的重要策略。 以上研究成果已发表在“Soil Biology and Biochemistry”和“Science of the Total Environment”期刊上。该研究工作得到了国家自然科学基金的资助。
  • 《南京土壤所在土壤自然微生物组降解机制方面取得进展》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 土壤自然微生物组具有高度的结构复杂性、代谢多样性和抗环境干扰性,因而它具有迅速调节自身结构来响应和适应复杂环境变化的能力,从而实现单一菌株难以完成或无法完成的环境功能。土壤自然微生物组是环境生物修复的重要资源,它能够直接参与持久性有机污染物的降解(如多环芳烃、多氯联苯等)。因此,如何挖掘土壤自然微生物组的环境修复功能,是当前生物修复领域的研究前沿和热点。 中国科学院南京土壤研究所研究员滕应课题组最新发表在Science of the Total Environment期刊上的论文提出了基于土壤自然微生物群落构建复合微生物组的生物修复策略,可用于高分子量多环芳烃污染土壤的生物修复。该研究将环境功能强(芘降解能力)的水稻土自然微生物群落引入到功能较弱的红壤中,使不同微生物成员相互接触,通过直接或间接生物信息交流,构建出新的相互作用关系网络(包括微生物之间、微生物与环境之间),从而形成稳态的土壤自然复合微生物组,并显著促进土壤中多环芳烃芘的生物降解。研究结果为多环芳烃污染土壤微生物修复提供了新思路、新方法。 吴晓燕 摘编自http://www.cas.cn/syky/201807/t20180705_4657249.shtml 原文标题:南京土壤所在多环芳烃污染土壤自然复合微生物组降解机制方面取得进展