《苏州纳米所李清文团队合作Small:通过镁调控二氧化锰正极获得高容量和高可逆循环性的水系锌离子电池苏州纳米所李清文团队合作Small:通过镁调控二氧化锰正极获得高容量和高可逆循环性的水系锌离子电池》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-16
  •  水系锌离子电池(ZIBs)因为具有高安全性、低成本、环境友好、高理论体积容量(5854 mAh cm?3)等优势,近几年受到了广泛关注。其中正极作为重要的组成部分直接影响电池的性能,其制备与优化路径也引起了科研人员的广泛关注。δ-MnO2因为具有二维层状结构、大的理论容量且储量丰富、无毒无害等优势,成为锌离子电池理想的正极材料。但是δ-MnO2因为本征导电性差所导致的动力学缓慢,循环过程中结构不稳定等问题依旧有待解决。

      基于以上背景,中国科学院苏州纳米所李清文团队与上海大学张登松教授合作提出将镁掺杂到层状二氧化锰晶格中(Mg-MnO2)作为锌离子电池正极材料来改善电池的电化学性能。与原始δ-MnO2相比,Mg-MnO2纳米片具有更大的比表面积,提供了更多的电活性位点,提高了电池的容量。掺杂阳离子和氧空位的引入改善了MnO2的导电性从而加快了电池的反应动力学。在0.6 A g?1的电流密度下,Zn// Mg-MnO2电池获得了370 mAh g?1的高比容量。此外,研究者对反应机理进行了进一步探索,证实Zn2+的插入是在几个循环活化反应之后发生的。最重要的是,经过多次充放电过程,Zn2+和MnOOH之间发生了可逆的氧化还原反应,提高了锌锰电池的容量和稳定性。这一工作对发展高性能锌离子电池具有一定的推动作用。

      相关工作以Triggering High Capacity and Superior Reversibility of Manganese Oxides Cathode via Magnesium Modulation for Zn//MnO2 Batteries为题发表在国际知名期刊Small上。中国科学院苏州纳米所与上海大学联培硕士生夏佳佳、中国科学院苏州纳米所博士生周雨融为论文的共同第一作者,上海大学张登松教授、中国科学院苏州纳米所王晓娜副研究员和邸江涛研究员为通讯作者。该工作得到江苏省自然科学基金等项目资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202305/t20230515_6754669.html;https://onlinelibrary.wiley.com/doi/10.1002/smll.202301906
相关报告
  • 《苏州纳米所张其冲等在柔性高比能水系锌离子电池方面取得系列进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-24
    •   随着可穿戴和便携式电子产品的兴起,促使电池向着高能量密度、长寿命和柔性方向发展。水系锌离子电池凭借安全性高、环境友好和水体系电导率高等优点,被认为是下一代储能电池的理想候选者。其中,柔性自支撑电极是实现可穿戴储能器件的核心部分,它能够避免粘结剂的使用,提高活性材料与电解液的接触面积和电极整体的导电性。在众多正极材料中,钒基材料,尤其是钒氧化物,具有可调节的层间距,可容纳大量的锌离子进行能量存储而被广泛应用于水系锌离子电池。然而,钒氧化物有限的层间距限制了锌离子嵌入/脱出、并在此过程中对其结构造成破坏以及在水体系中的部分溶解等因素阻碍了层状钒基材料的发展。   研究者利用钠离子与聚苯胺共嵌入策略,制备了扩大层间距的钒酸铵阴极材料(NaNVO-PANI),实现了高离子传导和储存的柔性锌离子电池。钠离子与带负电的VOx层板间的静电作用稳定了层结构;聚苯胺将材料的层间距扩大到了13.8 ?,这为锌离子的嵌入/脱出提供了便利的通道。同时聚苯胺分子增加了活性材料的疏水性,从而抑制了NaNVO-PANI在水系电解液中的溶解。NaNVO-PANI作为柔性水系锌离子电池正极材料时,器件在0.5 A g?1电流密度下的质量比容量为454.6 mAh g?1。即使在5 A g?1的高电流密度下也具有228.27 mAh g?1的质量比容量。该成果以 Sodium-Ion and Polyaniline Co-Intercalation into Ammonium Vanadate Nanoarrays Induced Enlarged Interlayer Spacing as High-Capacity and Stable Cathodes for Flexible Aqueous Zinc-Ion Batteries为题发表在国际知名期刊 Advanced Functional Materials上。论文第一作者为新疆大学和中国科学院苏州纳米技术与纳米仿生研究所联合培养硕士研究生赵松,通讯作者为东南大学李雷博士、新疆大学吴冬玲教授和中国科学院苏州纳米技术与纳米仿生研究所王永疆和张其冲项目研究员。  锌离子与钒氧化合物晶体结构之间的强静电相互作用以及单一阳离子氧化还原中心是开发高比能水系锌离子电池的绊脚石。东南大学尹奎波和中国科学院苏州纳米技术与纳米仿生研究所张其冲等通过原位阳极氧化策略开发了具有丰富缺陷和辅助阴离子氧化还原中心的自支撑无定形氧硫化钒(AVSO)正极。合成的无定形AVSO正极展示出Zn2+各向同性路径和快速的反应动力学,具有538.7 mAh g-1的高可逆容量和高倍率能力(在40 A g-1下237.8 mAh g-1)。实验结果和理论模拟表明,钒阳离子是主要的氧化还原中心,而AVSO正极中的硫阴离子是新增的氧化还原中心来补偿活性位点的局部电子转移。具有硫化学的无定形结构可以承受Zn2+/H+插入时的体积变化,并削弱Zn2+与主体材料之间的静电相互作用。因此,AVSO复合材料显示出减弱的结构退化和长期可循环性(在40 A g-1下20000次循环后保持89.8%)。这项工作可以扩展到多种氧化还原反应的自支撑非晶正极材料,加快了设计超快和长寿命可穿戴水系锌离子电池的发展。该成果以Achieving Synergetic Anion-Cation Redox Chemistry in Freestanding Amorphous Vanadium Oxysulfide Cathodes towards Ultrafast and Stable Aqueous Zinc-Ion Batteries为题发表在国际知名期刊 Advanced Functional Materials上。论文第一作者为东南大学博士研究生潘瑞,通讯作者为中国科学院苏州纳米技术与纳米仿生研究所张其冲项目研究员和东南大学尹奎波副教授。  鉴于柔性准固态锌离子电池是水系电池中发展最快的热点之一,总结该领域的最新发展可以为柔性准固态锌离子电池的设计具有重要的指导作用。本综述从机理、设计原则、应用等方面系统介绍了柔性准固态锌离子电池的合理设计策略和研究进展。首先,详细阐述了柔性准固态锌离子电池的储能和柔性机制。随后,系统地阐述了柔性准固态锌离子电池的柔性设计原则和功能化策略。进一步介绍了柔性准固态锌离子电池在可穿戴电子产品中的最新进展和实际应用。最后,对柔性准固态锌离子电池的一些应用和研究前景进行了论证,为其实际应用的开发提供了指导。相关成果以Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries: Design Principles, Functionalization Strategies, and Applications为题发表在国际知名期刊 Advanced Energy Materials上。论文第一作者为南京大学博士研究生王文惠,通讯作者为安阳师范学院李朝威博士、中国科学院苏州纳米技术与纳米仿生研究所张其冲项目研究员以及南京大学姚亚刚教授。
  • 《苏州纳米所蔺洪振团队等AFM:高体积能量密度铝硫电池的构筑、设计与展望》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-20
    • 铝硫(Al-S)电池由于其高体积能量密度、高安全性、低成本以及Al和S元素的高丰度而被认为是可以满足日益增长储能需求的替代品。然而,铝硫电池仍存在许多挑战,如多硫化物转化动力学缓慢、电解液兼容性差和潜在的铝腐蚀和枝晶形成等问题。当前大多数研究都集中在设计或开发合适的基体材料或优化兼容的电解质上,以寻求高性能的Al-S体系,包括:i) 设计高导电性的基体来提高电极电导率;ii) 开发杂原子掺杂的多孔结构,以物理/化学方式锚定易溶于电解液的多硫化铝;iii) 引入适当的电解液成分与硫正极和铝负极高度兼容,以获得高反应动力学和较低的极化。然而,目前对Al-S电池的研究现状及进一步发展仍然缺乏系统而深入的总结和分析。基于对铝硫电化学的系统理解,结合团队前期在SEI层调控Li传输以抑制枝晶的形成及引入活性催化剂/活化剂改变界面位点活性,降低锂扩散与反应势垒等研究基础 (Adv. Funct. Mater. 2022, 31, 2110468; ACS Nano 2022, 16, 17729; Energy Storage Mater. 2022, 52, 210;Chem. Eng. J. 2022, 446, 137291; Adv. Funct. Mater. 2021, 31, 2007434; Adv. Sci. 2022, 2202244; Nano Lett. 2022, 22, 8008; Nano Lett. 2021, 21, 3245;Energy. Environ. Mater. 2022, 5,731; Chem. Eng. J. 2022, 429, 132352; Energy Storage Mater. 2019, 18, 246; Energy Storage Mater. 2020, 28, 375; J. Mater. Chem. A 2020, 8, 22240; Chem. Eng. J. 2020, 417, 128172),撰写了全面实现高体积能量密度铝-硫二次电池策略的综述文章。   基于对铝硫电池目前的研究进展缺乏系统认知的现状,中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员与德国亥姆赫兹电化学研究所王健博士(现为洪堡学者)联合西安理工大学游才印团队张静博士,全面综述了抑制多硫化物的穿梭以及平滑的铝负极溶解/沉积的具体策略。重点阐述了硫正极从吸附到促进多硫化物转化动力学的催化剂调控的发展;电解质从简单的组分调控到降低离子传输势垒的演变;铝负极保护结合离子传输调控策略实现无枝晶铝负极,更清晰地解读了Al-S电池可能的电化学反应机制及该体系中高活性催化剂潜在的工作机制。最后,进一步展望了实现高性能Al-S电池的方法及大规模储能应用面临的机遇和挑战,对发展高能量密度快速充放Al-S电池体系具有重要的启示作用。   铝硫电池电化学反应原理及目前存在的主要问题。从铝硫电池电化学反应原理出发,总结出不能实现高性能的主要原因为:多硫化铝转化动力学缓慢、电解液兼容性差和离子传输较慢、潜在的铝腐蚀和枝晶的形成等,严重阻碍了快速充放电Al-S电池的发展(图1)。   系统总结和分析促进高效硫转化和抑制多硫化物穿梭的吸附催化策略。随着对高能量密度要求的不断提高,高含硫正极是实现高面容量和高体积能量密度的必要条件。而传统的载体设计与极性位点的植入可以加强基体多硫化物的吸附。随着高含硫正极的吸附位点趋于饱和,常见的吸附策略抑制穿梭效应的能力有限。进一步提出的“吸附-催化”组合策略,充分利用各自的优势,通过提高转化动力学来缓解多硫化物的累积,增强对穿梭效应的抑制效果。重点介绍了金属基催化剂有效提升多硫化物相互转化动力学的机制,对提高硫利用率和降低电池极化的促进作用(图2)。   利用低成本水系电解液和高可逆性离子液体实现高可逆的Al-S电池体系。将可充电铝基电池推向更高容量水平的不可或缺的部分是兼容电解液的选择。事实上,可充电铝硫电池还处于尝试阶段。早期的无机熔盐体系电解质对温度的依耐性强且粘度非常高。低粘度电解液中离子的高输运更有利于实现高性能铝硫电池。近年来发展起来的水系电解液具有较快的离子传输和低粘度,但该电池体系下存在铝表面氧化/钝化层形成、析氢副反应等问题。而室温离子液体作为Al-S电池的电解液,有助于铝离子的快速溶剂化/脱溶,具有高离子电导率。基于此,重点综述了高可逆性的室温离子液体电解液从简单的组分调控到降低离子传输势垒的发展过程,以及离子液体促进实现高离子传输动力学的机制(图3和图4)。   结合表面修饰层防止铝腐蚀与铝离子传输动力学调控策略发展无枝晶铝负极。在Al-S电化学中,负极Al沉积是从Al离子脱溶到铝原子成核和扩散的逐步铝沉积的过程。从溶剂化结构中释放自由Al3+的脱溶速率及后续铝原子在铝表面的扩散速率,是形成均匀离子通量的决定因素。因此,和锂金属负极的锂沉积原理类似,为了获得Al离子/原子动力学,必须克服高的脱溶、成核和扩散势垒,以形成均匀和横向铝沉积。当前,通过Al合金化的方式实现了锂传输动力学的调控,促进了无枝晶铝沉积。未来有望通过催化策略调控沉积动力学实现无枝晶的长寿命铝基电池(图5)。   以上研究成果以Strategies for Realizing Rechargeable High Volumetric Energy Density Conversion-Based Aluminum Sulfur Batteries为题,发表在Advanced Functional Materials期刊中。论文第一作者为西安理工大学张静博士,通讯作者为西安理工大学游才印教授、中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员与德国亥姆赫兹电化学研究所王健博士。以上联合工作受到了江苏省自然科学基金、国家重点研发计划、国家自然科学基金及德国Alexander von Humboldt Foundation(洪堡基金)等基金项目支持。