《苏州纳米所张其冲等在柔性高比能水系锌离子电池方面取得系列进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-07-24
  •   随着可穿戴和便携式电子产品的兴起,促使电池向着高能量密度、长寿命和柔性方向发展。水系锌离子电池凭借安全性高、环境友好和水体系电导率高等优点,被认为是下一代储能电池的理想候选者。其中,柔性自支撑电极是实现可穿戴储能器件的核心部分,它能够避免粘结剂的使用,提高活性材料与电解液的接触面积和电极整体的导电性。在众多正极材料中,钒基材料,尤其是钒氧化物,具有可调节的层间距,可容纳大量的锌离子进行能量存储而被广泛应用于水系锌离子电池。然而,钒氧化物有限的层间距限制了锌离子嵌入/脱出、并在此过程中对其结构造成破坏以及在水体系中的部分溶解等因素阻碍了层状钒基材料的发展。

      研究者利用钠离子与聚苯胺共嵌入策略,制备了扩大层间距的钒酸铵阴极材料(NaNVO-PANI),实现了高离子传导和储存的柔性锌离子电池。钠离子与带负电的VOx层板间的静电作用稳定了层结构;聚苯胺将材料的层间距扩大到了13.8 ?,这为锌离子的嵌入/脱出提供了便利的通道。同时聚苯胺分子增加了活性材料的疏水性,从而抑制了NaNVO-PANI在水系电解液中的溶解。NaNVO-PANI作为柔性水系锌离子电池正极材料时,器件在0.5 A g?1电流密度下的质量比容量为454.6 mAh g?1。即使在5 A g?1的高电流密度下也具有228.27 mAh g?1的质量比容量。该成果以 Sodium-Ion and Polyaniline Co-Intercalation into Ammonium Vanadate Nanoarrays Induced Enlarged Interlayer Spacing as High-Capacity and Stable Cathodes for Flexible Aqueous Zinc-Ion Batteries为题发表在国际知名期刊 Advanced Functional Materials上。论文第一作者为新疆大学和中国科学院苏州纳米技术与纳米仿生研究所联合培养硕士研究生赵松,通讯作者为东南大学李雷博士、新疆大学吴冬玲教授和中国科学院苏州纳米技术与纳米仿生研究所王永疆和张其冲项目研究员。

     锌离子与钒氧化合物晶体结构之间的强静电相互作用以及单一阳离子氧化还原中心是开发高比能水系锌离子电池的绊脚石。东南大学尹奎波和中国科学院苏州纳米技术与纳米仿生研究所张其冲等通过原位阳极氧化策略开发了具有丰富缺陷和辅助阴离子氧化还原中心的自支撑无定形氧硫化钒(AVSO)正极。合成的无定形AVSO正极展示出Zn2+各向同性路径和快速的反应动力学,具有538.7 mAh g-1的高可逆容量和高倍率能力(在40 A g-1下237.8 mAh g-1)。实验结果和理论模拟表明,钒阳离子是主要的氧化还原中心,而AVSO正极中的硫阴离子是新增的氧化还原中心来补偿活性位点的局部电子转移。具有硫化学的无定形结构可以承受Zn2+/H+插入时的体积变化,并削弱Zn2+与主体材料之间的静电相互作用。因此,AVSO复合材料显示出减弱的结构退化和长期可循环性(在40 A g-1下20000次循环后保持89.8%)。这项工作可以扩展到多种氧化还原反应的自支撑非晶正极材料,加快了设计超快和长寿命可穿戴水系锌离子电池的发展。该成果以Achieving Synergetic Anion-Cation Redox Chemistry in Freestanding Amorphous Vanadium Oxysulfide Cathodes towards Ultrafast and Stable Aqueous Zinc-Ion Batteries为题发表在国际知名期刊 Advanced Functional Materials上。论文第一作者为东南大学博士研究生潘瑞,通讯作者为中国科学院苏州纳米技术与纳米仿生研究所张其冲项目研究员和东南大学尹奎波副教授。

     鉴于柔性准固态锌离子电池是水系电池中发展最快的热点之一,总结该领域的最新发展可以为柔性准固态锌离子电池的设计具有重要的指导作用。本综述从机理、设计原则、应用等方面系统介绍了柔性准固态锌离子电池的合理设计策略和研究进展。首先,详细阐述了柔性准固态锌离子电池的储能和柔性机制。随后,系统地阐述了柔性准固态锌离子电池的柔性设计原则和功能化策略。进一步介绍了柔性准固态锌离子电池在可穿戴电子产品中的最新进展和实际应用。最后,对柔性准固态锌离子电池的一些应用和研究前景进行了论证,为其实际应用的开发提供了指导。相关成果以Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries: Design Principles, Functionalization Strategies, and Applications为题发表在国际知名期刊 Advanced Energy Materials上。论文第一作者为南京大学博士研究生王文惠,通讯作者为安阳师范学院李朝威博士、中国科学院苏州纳米技术与纳米仿生研究所张其冲项目研究员以及南京大学姚亚刚教授。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202307/t20230721_6813898.html
相关报告
  • 《苏州纳米所王锦等在自适应热管理方面取得系列进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-08-21
    •  无源自适应热管理技术(Passive self-adaptive thermal management)是一种无需外界能源驱动、通过材料自身理化性能调控和设计即可实现环境响应热管理行为的技术,包括自适应降温和保温等,在极端环境人体热管理(Personal thermal management, PTM)、建筑无源调温系统以及碳减排方面具有潜在的应用价值。为此,中国科学院苏州纳米技术与纳米仿生研究所王锦等通过凝胶、气凝胶及其复合结构设计,实现了系列耐极端环境复合材料的制备、气凝胶温度开关、跨介质热管理(Cross media thermal management, CMTM)、按需热管理(On-demand)、高低温双向调控等(Adv. Mater. 2023, 35, 2207638; Adv. Funct. Mater. 2023, 2300441; Macromol. Rapid Commun. 2023, 44, 2200948; ACS Appl. Mater. Interfaces 2022, 14, 46569; ACS Appl. Mater. Interfaces 2022, 14, 44849; Adv. Sci. 2022, 9, 2201190; ACS Nano 2021, 15, 19771),撰写了基于环糊精分子的高分子设计合成策略及其在多孔材料气凝胶构筑方面独特优势的综述文章(Prog. Polym. Sci. 2021, 118, 101408)。   集超低密度和极低热导率于一体的气凝胶在热管理调控材料中具有独特的优势,然而,超细单分散氧化硅气凝胶微球的常压干燥制备一直是本领域面临的关键技术瓶颈,通过传统的表面活性剂和乳液聚合等方面都面临球形度低、粒径大、粒径分布宽等问题。为此,通过前驱体的水解度调控和复合溶剂的策略,成功实现了超细单分散氧化硅气凝胶微球的一步法常压干燥,得到的气凝胶微球的粒径分布主要分布在1~3 μm,可以有效地散射太阳光,减少太阳辐射加热(图1)。  进一步通过调控气凝胶微球的粒径大小及其分布、颜色,以及采用不同红外发射率的聚合物薄膜对气凝胶进行封装,成功实现了自适应的保温或降温,通过模拟计算使用该氧化硅气凝胶前后用于建筑供暖和冷却排放的CO2的当量,可以发现在全球大部分气候下,氧化硅气凝胶微球的使用可以显著降低CO2的排放(图2),对助力碳减排具有一定的贡献。该工作近期以Ultrafine silica aerogels microspheres for adaptive thermal management in large-temperature-fluctuation environment为题发表在Chemical Engineering Journal。论文第一作者为中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室博士生刘玲,通讯作者为中国科学院苏州纳米技术与纳米仿生研究所王锦项目研究员和李清文研究员。 此外,气凝胶通常被认为具有优异的隔热保温性能,然而本研究团队发现,由于氧化硅气凝胶在8-13微米波段具有高的选择性发射率,因此其在户外环境表现出强劲的被动无源辐射降温(Passive radiative cooling, PRC)现象。那么,辐射降温是气凝胶的普适现象吗?为了回答这一问题,研究者合成了具有不同化学组分(氧化硅、氮化硼、石墨烯、凯夫拉、PBO、聚酰亚胺)的气凝胶,以及具有不同微观形貌(包括纳米颗粒网络、纳米纤维网络、纳米片网络和纳米带状网络等)。结果一致发现,所有的气凝胶在晴朗的夜间都表现出显著的辐射降温性能。该结果表明,如果气凝胶用于人体热管理,在户外活动时,必须考虑辐射降温对气凝胶隔热保温的影响,否则达不到理想的热管理目标(图3)。该工作近期以Universal passive radiative cooling behavior of aerogels为题发表在Journal Materials Chemistry A,并入选了Journal of Materials Chemistry A HOT Papers。论文第一作者为中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室硕士生马冰洁,通讯作者为中国科学院苏州纳米技术与纳米仿生研究所王锦项目研究员。  对于严寒环境下的人体保暖,如何实现轻薄化是人们不断追求的良好愿望。虽然采用优质的羽绒可以实现保暖服的轻质化,然而通常面临蓬松臃肿、易燃烧等问题。为此,采用具有耐1300℃高温的柔性氧化铝陶瓷织物为基底,通过原位聚合聚吡咯制备核-壳的功能织物,不但具有优异的阻燃和耐极端高温性能,还能在不同气候状态下,将太阳光快速转化成热量,实现人体的被动太阳光供暖(passive solar heating)(图4)。由于聚吡咯具有导电性,该织物又表现出优异的电加热性能(active joule heating),在3V电压的驱动下温度能在数秒内升高至32℃,通过电压的调节,其具有稳定的梯度温度调节能力。该双功能主被动供暖织物,为实现极寒环境下人体热防护的轻薄化提供重要支撑。该工作近期以Conformal Structured Ceramic Textiles with Passive and Active Heating Functionality为题发表在ACS Applied Engineering Materials。论文第一作者为南京理工大学与中国科学院苏州纳米技术与纳米仿生研究所联合培养硕士生商苗苗和中国科学院苏州纳米技术与纳米仿生研究所博士生刘玲,通讯作者为南京理工大学环境学院张轩教授和中国科学院苏州纳米技术与纳米仿生研究所王锦项目研究员。  
  • 《苏州纳米所蔺洪振研究团队在原位构建功能CEI层促进高容量锂离子电池方面取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-06-07
    •  长续航电动汽车与便携式智能设备的快速发展对可充电二次电池的能量密度提出了更高的要求。目前商业化锂离子电池正极材料的能量密度有限,严重限制了其进一步发展。金属硫化物具有较高的理论比容量(890mA h g-1),可以显著提高锂电池的能量密度。然而,金属硫化物作为电极材料时存在多硫化锂“穿梭”的问题,这会降低电极的容量和库伦效率并缩短电池寿命,严重阻碍了金属硫化物电极的商业化进程。中国科学院苏州纳米所蔺洪振团队在前期研究中发现,构筑有序结构的SEI人工层能够有效抑制枝晶的生长(Adv. Funct. Mater. 2022, 31, 2110468; Adv. Funct. Mater. 2021, 31, 2007434; ACS Appl. Mater. Interface 2019, 11, 30500),通过调控锂离子的动力学行为及加快多硫化物的转化,能获得长的循环寿命(Chem. Eng. J. 2021, 132352; Nano Lett. 2021, 21, 3245; Energy Environ. Mater.2021,0,1; Chem. Eng. J. 2020, 128172; Energy Storage Mater. 2019, 18, 246; Energy Storage Mater. 2020, 28, 375; ChemSusChem 2020, 13, 3404; Chem. Eng. J. 2020, 417, 2007434; Nano Energy 2017, 40, 390; J. Power Sources 2016, 321, 193)。   针对金属硫化物电极多硫化物“穿梭效应”的问题,中国科学院苏州纳米所王健博士(现为德国亥姆赫兹电化学研究所洪堡学者)与蔺洪振研究员联合西安理工大学张静博士从表界面功能化角度出发,在金属硫化物电极表面原位构建了一层均匀致密且富含LiF-Li3N的功能正极界面(CEI)层,选用界面选择性和频光谱(SFG)、飞行式二次离子质谱(TOF-SIMS)、X射线光谱(XPS)及原子力显微镜(AFM)等多手段联合研究了功能性CEI层的演变过程及其相关作用机制。   如图1所示,LiTFSI盐会在金属硫化物电极表面形成不连续的无效CEI层。而将高反应活性LiFSI盐添加到LiTFSI-DME电解液体系中,LiFSI会与LiTFSI竞争后均匀地吸附在电极表面,并在后续电化学过程中生成一层均匀致密且富含LiF-Li3N的功能CEI层,该CEI层可以有效抑制多硫化锂的“穿梭效应”并加快锂离子的扩散速率。   三维氮掺杂纳米碳包覆的二硫化亚铁(FeS2@3DNPC)合成流程如图2所示。XRD及XPS结果表明此复合材料为较纯Pyrite相的FeS2。从扫描电子显微镜图可以看出FeS2纳米颗粒成功均匀地嵌入三维纳米碳骨架中,为FeS2构建了良好的导电网络。  通过将不同摩尔浓度的高活性LiFSI离子液体添加到LiTFSI-DME电解液中,探究LiFSI离子液体含量对改性CEI层的影响。从电池的首次循环伏安曲线可以看出,添加LiFSI的金属硫化物电极表面形成了功能化的CEI层。阻抗结合循环伏安曲线表明,添加1.0 M LiFSI FeS2@3DNPC电极表面形成稳定的功能CEI层,有效抑制多硫化锂的“穿梭效应”获得较高的电化学可逆性。 通过SFG、AFM、SEM及 XPS表征结果揭示了功能CEI层的存在方式,即均匀分布于金属硫化物电极表面且柔韧性好,其主要成分为LiF和Li3N(图4)。其中,SFG的研究发现了FSI-与TFSI- 在电极界面存在竞争吸附关系。为了更加准确获取功能CEI层的界面结构信息,研究团队借助TOF-SIMS重构了功能CEI层的成分与3D结构(图5)。TOF-SIMS重构的功能CEI层成分均匀且致密,同时,在CEI层的作用下,循环后的FeS2仍保持了完整的颗粒形貌,充分证明CEI层可以抑制多硫化物穿梭,提升电极的可逆性,这与SEM mapping等2D表征结果相吻合。  添加1M LiFSI的电池在容量、库伦效率及容量保持率方面,均高于其他添加量和空白样品,并且优于绝大多数文献报道的结果(图6)。得益于均匀致密且柔韧性好的功能CEI层,即使在超高功率密度(6700W kg-1)下,电池仍获得较高的能量密度(769W h kg-1),稳定循环1000次后每圈衰减率低至0.039%。研究团队还将此方法成功应用于其他硫化物电极,表明原位构建功能CEI的策略可以助力金属硫化物电极实现快速充电及长循环寿命。   以上研究成果的第一作者为王健博士、程双,通讯作者为王健、张静、蔺洪振研究员,以Robust Interfacial Engineering Construction to Alleviate Polysulfide Shuttling in Metal Sulfide Electrodes for Achieving Fast-charge High-capacity Lithium Storages为题,发表在Chemical Engineering Journal期刊上。以上工作受到了江苏省自然科学基金、国家重点研发计划、国家自然科学基金等基金项目支持。