《复旦学者NAR发文:开发出高性能“基因魔剪”》

  • 来源专题:转基因生物新品种培育
  • 编译者: 王晶静
  • 发布时间:2021-03-29
  • 王永明/王红艳/李继喜团队合作CRISPR/Cas9被誉为“基因魔剪”,是基因编辑的利器,在基础研究、农业育种和基因治疗等领域得到了广泛应用。CRISPR/Cas9工具还存在很多局限。常用的SpCas9编辑范围广,活性高,但是基因大,给病毒载体递送带来困难。常用的SaCas9基因小,但是编辑范围小。其他Cas9活性低,应用较少。为了找到理想的Cas9工具酶,复旦大学王永明课题组建立了大规模筛选Cas9的平台,对自然界中数百种Cas9进行系统性筛查。2020年该课题组筛选到了SauriCas9,具备活性高、编辑范围广、基因小等优点,但是精准性不理想,介于SpCas9和SaCas9之间。
    2021年3月12号,王永明课题组联合王红艳和李继喜课题组在《核酸研究》(Nucleic Acids Research)上发表了题为“Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity”的研究论文。论文中,经过研究者鉴定和改造,开发出SlugCas9-HF工具酶,性能突出。它识别简单的NNGG PAM,具备活性高、精准性高、编辑范围广、基因小等优点。研究者同时还开发出ShaCas9、SlutrCas9、Sa-SlugCas9等工具。为了方便研究人员选择合适的工具酶使用,作者对本团队开发的7种工具酶和SaCas9的活性和精准性进行了比较。综合看,SlugCas9-HF在编辑活性、精准性和编辑范围都具有优势。该研究的第一作者胡子英博士兴奋地说:“我们后继工作对SlugCas9-HF和SpCas9的活性进行了比较,它们活性没有差异。也就是说SlugCas9-HF兼具了SpCas9和SaCas9的优点。这是我们一直寻找的理想工具酶,它在很多场景都可以取代SpCas9和SaCas9。我们还找到很多有优点的工具酶,将陆续与同行分享。”胡子英博士和张成东博士是论文的共同第一作者,王永明教授、王红艳教授和李继喜教授是论文的共同通讯作者。全文链接:https://pubmed.ncbi.nlm.nih.gov/33721016/

相关报告
  • 《中国学者本周CNS发文6篇,浙大“开挂”》

    • 来源专题:科技大数据监测服务平台
    • 编译者:dingxq
    • 发布时间:2019-12-17
    • 看点预告 ● 浙大继续“开挂”,拿下今年第9篇CNS ● 昆明理工研究成果登上Nature,同一团队10月刚完成Science首秀 ● 寻找马约拉纳零能模再下一城,中国科学院丁洪、高鸿钧团队发Science 本周,中国学者在Cell、Nature和Science上共发文6篇。 其中,浙大、昆明理工、港大分别完成3篇Nature,2篇Science由中国科学院物理所、香港中文大学团队完成,1篇Cell为中国科学院分子细胞中心、武大等单位联手完成。 Nature 浙大今年第9篇顶刊:找出人类自身炎症疾病“幕后元凶” 相关论文信息: https://www.nature.com/articles/s41586-019-1830-y 研究人员发现病人体内的RIPK1基因突变会导致细胞产生凋亡和程序性坏死,进而导致炎症因子水平异常升高,出现发热等症状。 找到致病机制后,研究者与医生提出了更精准的治疗方案,并取得良好疗效。 本文的4位共同通讯作者中,周青、俞晓敏来自浙江大学,王晓川来自复旦大学附属儿科医院。 周青,浙江大学生命科学研究院研究员、美国临床分子遗传学执业主任医师、美国医学遗传学与基因组学学院专家委员,主要研究方向包括自身炎症疾病和临床遗传诊断。 曾因发现ADA2 在单核细胞/巨噬细胞分化中起重要作用,影响血管完整性等成果两次登上《新英格兰医学》。 值得注意的是,本文是浙大今年第9篇顶刊论文,被网友称为“开挂的速度”。
  • 《遗传发育所开发出可预测的精细下调目标基因蛋白表达的新方法》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     基因编辑技术在植物中的开发和应用,为分子设计育种带来了革命性的变化。基于基因编辑技术建立基因精细调控的方法对于精准设计育种至关重要。目前应用最广泛的基因表达调控方法如CRISPR-Cas、CRISPRi和RNAi等技术,只能实现对基因的完全敲除或将基因的表达抑制到不可预测的水平。利用CRISPR-Cas9技术对启动子区域进行编辑,可以在转录层面将基因的表达调控至不同的水平,并产生大量不可预测的数量性状变异。而这种方法将耗费大量精力用以筛选理想的突变体。因此,开发新的能够可预测地精细调控基因表达的方法可以拓展现有的基因表达调控工具箱,为作物遗传改良提供有力的技术支撑。   上游开放阅读框(upstream open reading frame,uORF)是真核生物mRNA上普遍存在的翻译调控元件,对基因主效开放阅读框(primary open reading frame,pORF)的翻译具有抑制作用。2018年,中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR-Cas9技术对uORF进行编辑,建立了精细上调内源基因翻译的方法,并利用该方法培育出维生素C含量显著提高的生菜种质(Zhang et al., Nat. Biotechnol., 2018;Si et al., Nat. Protoc., 2020)。2020年,高彩霞研究组将这一技术应用于草莓的遗传改良,获得了梯度糖分的系列草莓新种质(Xing et al., Genome Biol., 2020)。近日,高彩霞研究组基于既往研究,进一步开发出能够可预测地精细下调目标基因蛋白表达的新方法。   uORF的长度及uORF与pORF之间的距离等多种因素均影响uORF对pORF翻译的抑制能力。因此,研究设想可通过以下两种策略抑制目标基因的翻译:一是在目标基因的5’ 非翻译区(5' untranslated region, 5’ UTR)从头产生新的uORF;二是原位突变内源uORF的终止密码子以延伸其表达框长度。原生质体瞬时系统的结果表明,这两种策略可以有效地将pORF的翻译抑制到不同的水平,且对其mRNA的表达量几乎没有影响。此后,研究利用碱基编辑和引导编辑系统获得了含有新创制uORF或内源uORF被延伸的水稻突变体植株,通过对突变体植株的蛋白表达水平和表型进行检测,发现突变体中引入的uORF变体对目标蛋白表达和表型的影响与瞬时系统结果一致。   为了实现对目标基因的表达进行连续的梯度下调,本研究结合以上两种策略,分别在水稻的OsTCP19、OsTB1和OsDLT基因的5’ UTR区域设计了一系列具有不同抑制能力的uORFs,瞬时系统的结果表明pORF的翻译水平被梯度地抑制到了原始水平的2.5-84.9%,实现了对基因的梯度敲降。OsDLT基因编码GRAS蛋白家族成员,参与水稻油菜素内酯信号转导途径,调控水稻株高、分蘖数、种子大小等多个重要农艺性状。该研究以OsDLT基因为靶标,通过编辑OsDLT基因的5’ UTR,获得了一组具有不同叶夹角、株高和分蘖数的突变体,且突变体的表型变化趋势与瞬时系统预测结果一致。