《BioRxiv,2月13日,Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-14
  • Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019

    Matthew C Wong, Sara J Javornik Cregeen, Nadim J Ajami, Joseph F Petrosino

    doi: https://doi.org/10.1101/2020.02.07.939207

    Abstract

    A novel coronavirus (nCoV-2019) was the cause of an outbreak of respiratory illness detected in Wuhan, Hubei Province, China in December of 2019. Genomic analyses of nCoV-2019 determined a 96% resemblance with a coronavirus isolated from a bat in 2013 (RaTG13); however, the receptor binding motif (RBM) of these two genomes share low sequence similarity. This divergence suggests a possible alternative source for the RBM coding sequence in nCoV-2019. We identified high sequence similarity in the RBM between nCoV-2019 and a coronavirus genome reconstructed from a viral metagenomic dataset from pangolins possibly indicating a more complex origin for nCoV-2019.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.07.939207v1
相关报告
  • 《BioRxiv,3月2日,Mutations, Recombination and Insertion in the Evolution of 2019-nCoV》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-03
    • Mutations, Recombination and Insertion in the Evolution of 2019-nCoV Aiping Wu, Peihua Niu, Lulan Wang, Hangyu Zhou, Xiang Zhao, Wenling Wang, Jingfeng Wang, Chengyang Ji, Xiao Ding, Xianyue Wang, Roujian Lu, Sarah Gold, Saba Aliyari, Shilei Zhang, Ellee Vikram, Angela Zou, Emily Lenh, Janet Chen, Fei Ye, Na Han, Yousong Peng, Haitao Guo, Guizhen Wu, Taijiao Jiang, Wenjie Tan, Genhong Cheng doi: https://doi.org/10.1101/2020.02.29.971101 Abstract Background: The 2019 novel coronavirus (2019-nCoV or SARS-CoV-2) has spread more rapidly than any other betacoronavirus including SARS-CoV and MERS-CoV. However, the mechanisms responsible for infection and molecular evolution of this virus remained unclear. Methods: We collected and analyzed 120 genomic sequences of 2019-nCoV including 11 novel genomes from patients in China. Through comprehensive analysis of the available genome sequences of 2019-nCoV strains, we have tracked multiple inheritable SNPs and determined the evolution of 2019-nCoV relative to other coronaviruses. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,3月24日,(第2版更新)Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-25
    • Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection Xiaojun Li, Elena E. Giorgi, Manukumar Honnayakanahalli Marichann, Brian Foley, Chuan Xiao, Xiang-peng Kong, Yue Chen, Bette Korber, Feng Gao doi: https://doi.org/10.1101/2020.03.20.000885 Abstract COVID-19 has become a global pandemic caused by a novel coronavirus SARS-CoV-2. Understanding the origins of SARS-CoV-2 is critical for deterring future zoonosis and for drug discovery and vaccine development. We show evidence of strong purifying selection around the receptor binding motif (RBM) in the spike gene and in other genes among bat, pangolin and human coronaviruses, indicating similar strong evolutionary constraints in different host species. We also demonstrate that SARS-CoV-2's entire RBM was introduced through recombination with coronaviruses from pangolins, possibly a critical step in the evolution of SARS-CoV-2's ability to infect humans. Similar purifying selection in different host species and frequent recombination among coronaviruses suggest a common evolutionary mechanism that could lead to new emerging human coronaviruses. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.