《BioRxiv,3月24日,(第2版更新)Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-25
  • Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection

    Xiaojun Li, Elena E. Giorgi, Manukumar Honnayakanahalli Marichann, Brian Foley, Chuan Xiao, Xiang-peng Kong, Yue Chen, Bette Korber, Feng Gao

    doi: https://doi.org/10.1101/2020.03.20.000885

    Abstract

    COVID-19 has become a global pandemic caused by a novel coronavirus SARS-CoV-2. Understanding the origins of SARS-CoV-2 is critical for deterring future zoonosis and for drug discovery and vaccine development. We show evidence of strong purifying selection around the receptor binding motif (RBM) in the spike gene and in other genes among bat, pangolin and human coronaviruses, indicating similar strong evolutionary constraints in different host species. We also demonstrate that SARS-CoV-2's entire RBM was introduced through recombination with coronaviruses from pangolins, possibly a critical step in the evolution of SARS-CoV-2's ability to infect humans. Similar purifying selection in different host species and frequent recombination among coronaviruses suggest a common evolutionary mechanism that could lead to new emerging human coronaviruses.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.20.000885v2
相关报告
  • 《BioRxiv,3月7日,(第2版更新)The within-host viral kinetics of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-08
    • The within-host viral kinetics of SARS-CoV-2 Chentong Li, Jinhu Xu, Jiawei Liu, Yicang Zhou doi: https://doi.org/10.1101/2020.02.29.965418 Abstract In this work, we use a within-host viral dynamic model to describe the SARS-CoV-2 kinetics in the host. Chest radiograph score data are used to estimate the parameters of that model. Our result shows that the basic reproductive number of SARS-CoV-2 in host growth is around 3.79. Using the same method we also estimate the basic reproductive number of MERS virus is 8.16 which is higher than SARS-CoV-2. The PRCC method is used to analyze the sensitivities of model parameters and the drug effects on virus growth are also implemented to analyze the model. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,3月19日,(第2版更新)Molecular Dynamics Simulations Indicate the SARS-CoV-2 Mpro Is Not a Viable Target for Small-Molecule Inhibitors Design》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-20
    • Molecular Dynamics Simulations Indicate the SARS-CoV-2 Mpro Is Not a Viable Target for Small-Molecule Inhibitors Design Maria Bzowka, Karolina Mitusinska, Agata Raczynska, Aleksandra Samol, Jack Adam Tuszynski, Artur Gora doi: https://doi.org/10.1101/2020.02.27.968008 Abstract The coronavirus outbreak took place in December 2019 and continues to spread worldwide. In the absence of an effective vaccine, inhibitor repurposing may seem a fruitful attempt. Here, we compared Mpros from SARS-CoV-2 and SARS-CoV. Despite a high level of sequence similarity, the binding sites of analysed proteins show major differences in both shape and size indicating that repurposing SARS drugs for COVID-19 may be futile. Furthermore, the analysis of the pockets' conformational changes during the simulation time indicates their flexibility, which dashes hopes for rapid and reliable drug design. Conversely, structural stability of the SARS-CoV-2 Mpro with respect to mutations of the binding cavity and adjacent flexible loops indicates that the protein's mutability will pose a further challenge to the rational design of small-molecule inhibitors. However, few residues contribute significantly to the protein stability and thus can be considered as key anchoring residues for Mpro inhibitor design. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.