《Angew | 上海药物所发展抗甲流H1N1大环抑制剂设计新方法与新技术》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-03-03
  •   流感病毒严重影响人类的生命健康,对世界公共卫生体系构成巨大威胁。尽管人们针对病毒本身和宿主,发现了不同作用靶点的抗病毒药物,然而,随着流感病毒的变异,已有的抗流感药物面临严峻的耐药形势,迫切需要发展新的骨架分子,特别是大环类分子,以推进抗流感病毒药物研发。

      大环类的天然产物现已成为药物先导化合物发现的重要来源之一。由于其具有独特的环状骨架、3D构象受限、适当的刚性和柔性等特点,大环化策略在药物设计中备受青睐。然而,受自然界生物合成途径的制约,天然大环化合物仍然存在着结构多样性不足等问题,从而限制了大环类药物的研发。因此,急需发展新的方法来设计合成结构丰富和生物活性多样的类天然大环化合物,从而加速大环先导化合物的发现。

      此前,中国科学院上海药物所杨伟波课题组通过仿生模块化的设计策略成功构建了一系列具有生物学活性的大环化合物库。近期,团队以天然产物中广泛存在的苯基吡啶结构和含有α-芳基苯乙酮的环状结构为基础,设计了新型的类天然大环化合物(图1),并通过发展一种新的C-H/O2双活化的反应,将原本需三步的传统反应缩短为一步,极大地加速此类大环化合物的合成。这一反应突破了原本C-H/O2双活化反应只限于两组分的局限性,为后阶段闭环反应提供了新的反应类型。表型筛选发现,部分大环化合物具有较好的抗甲流H1N1活性。

      科研团队首先以分子间反应为模板反应筛选得到了最佳的反应条件,并且这一反应条件可以直接应用于后阶段的大环化合物的合成。值得注意的是,反应生成的大环化合物还可以在铜络合物催化下进一步转化为结构新颖的氮杂稠环化合物。通过活性表型筛选,团队发现合成得到的含有α-芳基苯乙酮结构和氮杂稠环结构的大环化合物都具有一定的抗甲流H1N1活性,从而为抗甲流H1N1的大环类药物的开发提供了重要的参考。此外,科研人员还通过同位素标记实验、对照试验、DFT计算等方式,对反应的机理进行了研究,从而为以后的反应设计提供了指导。相关成果于2023年2月14日于Angew Chem Int Ed杂志在线发表。

      上海药物所杨伟波课题组研究生宋必超、杨莉副研究员以及香港科技大学博士后郭雪莹为该项工作的共同第一作者。上海药物所杨伟波研究员以及香港科技大学林振阳教授为共同通讯作者。上海药物所左建平研究员给与了技术支持。该研究项目得到了国家自然科学基金、上海市科委等项目的资助。

      论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202218886

  • 原文来源:http://www.simm.ac.cn/web/xwzx/kydt/202303/t20230302_6687747.html
相关报告
  • 《JMC | 上海药物所发展仿生模块化策略助力P-糖蛋白大环抑制剂的开发》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-06
    •   多药耐药是癌症化疗失败的主要原因之一,其作用机制复杂。多项研究表明,以P-糖蛋白(P-gp)为代表的ATP结合盒转运蛋白的过度表达与之密切相关。因此,针对P-gp开发新型抑制剂与抗肿瘤药物联用,可能成为解决化疗过程中多药耐药问题的有力手段。   大环类化合物由于其独特的3D结构,合适的刚性和柔性,优良的理化性质,为发展高选择性、低毒性的新型P-gp抑制剂提供了思路。目前报道的大环类P-gp抑制剂均来源于天然产物,如jatrophane diterpenoids,dysoxylactam A,cyclolipopeptides等。然而,天然产物来源有限、合成困难等客观因素限制了其进一步优化和生物学评价。为解决这一难题,研究者们利用仿生模块化策略来构建类天然大环化合物。该策略具有合成简单,结构多样性等优点,在很大程度上弥补了大环天然产物在化学空间上的不足,拓展了大环化合物的应用研究。 中国科学院上海药物研究所杨伟波课题组长期致力于利用仿生模块化策略构建大环化合物(Nat. Commun. 2020, 11, 2151.; J. Am. Chem. Soc. 2020, 142, 9982.; Nat. Commun. 2021, 12, 1304. Chem 2022, 10.1016/j.chempr.2022.10.019)。2020年,他们通过钯催化脱羰烯基化反应构建多取代丁二烯骨架,并合成了具有良好P-gp抑制活性的大环化合物(J. Am. Chem. Soc. 2020, 142, 9982.)。   近日,杨伟波团队通过该方法高效地构建了一系列含丁二烯骨架的大环化合物,并系统性地对该类大环化合物进行了构效关系梳理,得到了活性提高、毒性降低的优势化合物,且该化合物对包含长春瑞滨、紫杉醇、阿霉素在内的多种抗肿瘤药物和多种不同耐药细胞株均显示出了良好的逆转活性,显示出广谱的逆转多药耐药活性。进一步的代谢性质评价和体内活性评价均显示出良好的结果。机制验证实验表明,该化合物是通过诱导P-gp构象变化来抑制其活性,而没有改变其表达水平,该结果从蛋白和mRNA水平均得到验证。此外,实验结果显示,细胞经化合物与长春瑞滨联用后cleaved-caspase 3和 cleaved-caspase 9蛋白表达水平显著上调,表明该联用策略可能诱导了细胞凋亡过程。   2023年2月2日,该研究工作以Modular Biomimetic Strategy Enabled Discovery of Simplified Pseudo-Natural Macrocyclic P?Glycoprotein Inhibitors Capable of Overcoming Multidrug Resistance为题发表于Journal of Medicinal Chemistry,为大环类P-gp抑制剂的设计、发展及肿瘤化疗中多药耐药问题的解决提供了参考。   上海药物所杨伟波研究员、黄蔚研究员、楼丽广研究员为论文通讯作者,国科大杭州高等研究院博士后刘博,上海药物所研究生于雪妮、刘丽萍,副研究员王蕾博士为论文共同第一作者。上海药物所罗成研究员给与了技术支持。该研究项目得到了国家自然科学基金委、科技部、中国科学院和上海市科委等项目的资助。   全文链接:https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c01424
  • 《Chem | 上海药物所合作发现抗流感病毒H1N1活性的类天然大环肟化合物》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-15
    •   流感病毒严重影响人类的生命健康,对世界公共卫生体系构成巨大威胁。在流感季节,每年有高达数百万的重症病例,有约25万到50万名患者死亡。流感病毒有着完整的吸附释放的复制周期。在整个病毒复制过程中,人们针对病毒本身和宿主,发现了不同作用靶点的抗病毒药物。然而,随着流感病毒的变异,已有的抗流感药物面临严峻的耐药形势,迫切需要发展新的骨架分子,推进抗流感病毒药物研发。   天然产物是药物研发的宝库,它们对靶点的确定与先导化合物的发现起着非常重要的作用。尽管如此,天然产物存在分离量少、全合成复杂和分子编辑困难等挑战。相反,类天然产物具有可获得性强、结构多样和功能丰富等特点,引起了药物化学家的广泛关注。特别是类天然大环化合物,它们是一类包含十二个或更多原子组成的环状化合物,拥有特殊的3D构象,适当的刚性和柔性,不仅可增强与靶蛋白的选择性和亲和力,而且可以干预难成药靶点,如蛋白-蛋白互作(PPI)。   在抗流感病毒类天然产物的研究中,上海药物所杨伟波课题组基于仿生模块化的策略(Nat. Commun. 2020, 11, 2151.; J. Am. Chem. Soc. 2020, 142, 9982-9992.; Nat. Commun. 2021, 12, 1304.),发展了Rh(III)催化双分子双碳氢键活化大环化反应。值得注意的是,该反应模式利用了原位产生导向基的方法,高化学选择性地分别实现了串联酰胺化-烷基化,串联酰胺化-烯基化与串联酰胺化-烯丙基大环化。这些成果为快速、高效地构建结构多样性的类天然肟大环库提供了有效的工具。   近日,研究团队对分子的构象进行了PMI分析,发现所得类天然肟大环库除了含有直线型和平面型构象外,还具有不可多得的球型构象。最后,研究团队对类天然肟大环库进行表型筛选,结果表明这类化合物具有抗流感病毒H1N1的活性(其中活性最新化合物IC50 = 0.57 μM,CC50 > 100 μM,SI >176),进一步,通过构效关系发现,目标分子中的肟基和α,β不饱和基团对活性的保持不可或缺。在无细胞毒浓度下,先导化合物对病毒造成的细胞病变有很好的保护作用。同时,免疫荧光实验证明目标化合物能够显著降低感染病毒核蛋白的荧光强度。相关成果于11月10日于Chem杂志在线发表。   上海药物所杨伟波研究员、黄蔚研究员、杨莉副研究员以及美国加州洛杉矶分校Kendall N. Houk教授为共同通讯作者。上海药物所郑明月研究员与左建平研究员为本研究给与了技术支持。上海药物所研究生王浩、李中玉、毕童钰、美国美国加州洛杉矶分校 Xiangyang Chen以及Jonathan J. Wong为共同第一作者。该研究项目得到了国家自然科学基金委NSFC(22171275)、科技部、中国科学院、上海市科委以及美国NSF等项目的资助。   论文链接:https://www.cell.com/chem/fulltext/S2451-9294(22)00561-7