《LG化学尖端材料新战略:下一代显示 + 未来出行》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-06-28
  • 近年来,LCD技术以其优异的显示性能和成熟的技术,占据了显示市场的绝对主流。同时,电视生产企业为了满足消费者对产品升级和更新换代的需求变化,也在不断加大OLED等下一代显示技术的产品研发。

    数据显示,2019年全球OLED显示面板出货量已达7.34亿片,到2022年出货量或将突破9亿片。OLED电视作为高端市场的主流技术,需求预计从2019年的300万台增至2024年的951万台。

    为更快响应客户需求变化的趋势,LG化学从未来市场和客户导向的角度出发,于去年4月组建尖端材料事业本部,将旗下产品重组为IT材料、汽车材料和产业材料三大事业部。

    IT材料事业
    OLED显示材料

    继今年年初出售光刻胶以及退出玻璃基板业务之后,近日LG化学又将LCD偏光片业务出售给宁波杉杉。偏光片作为液晶显示的核心尖端材料,目前全球只有为数不多的企业掌握该技术。依托LG化学多年积累的核心技术和运营经验,结合国内企业的本地化运营优势,此次出售将是LG化学与国内企业的又一次双赢合作。

    未来,LG化学将加快显示材料事业战略调整步伐,集中于下一代的OLED显示材料,加强对大型OLED电视偏光片、封装膜、中小型P-OLED(塑料OLED)偏光片、工艺保护膜以及OLED发光层和共通层的研发。

    汽车材料事业
    高强度轻量化材料

    随着旨在改善环境的全球汽车尾气排放限制规定的加强,汽车车身轻量化技术将成为今后重要的竞争要素。因此,LG化学未来将以工程塑料(EP)等为中心开发出不同性能的材料,以加强全球客户的应对能力。

    产业材料事业
    电池核心材料

    LG化学将专注于加速提升电池四大原材料之一的正极材料的产品技术,不断确保动力电池的下一代核心材料技术。

    未来,LG化学将从客户和应用的角度出发,提升产品策划、研发能力,发掘和培养未来显示及电动出行等可持续发展领域的新事业新产品。

相关报告
  • 《如何利用先进材料提高下一代EV电池的效率》

    • 来源专题:工程机械与高端装备
    • 编译者:Hazel
    • 发布时间:2025-05-07
    • 随着电动汽车需求激增,对高效可靠电池技术的需求日益迫切。先进材料将成为突破下一代动力电池性能瓶颈的核心钥匙,工程师需通过以下战略布局引领电动出行革命。 电动汽车电池面临的挑战 由于多种因素,电动汽车市场目前在电池设计方面面临巨大压力。一个主要问题是采购原材料,例如锂、钴、镍和石墨。这些物品对于当今EV电池的功能至关重要,但它们的需求正在飙升。研究人员预测,到2050年,需求将增长26倍,其中钴增长6倍,镍增长12倍,石墨增长9倍。由于全球努力实现交通脱碳,从而加剧了资源争夺,供应链紧张导致成本飙升。 另一个挑战是温度对电池性能和使用寿命的影响。高温会加速电动汽车电池内的化学反应速度,导致热失控和锂镀等问题。这些情况会降低电池质量,损坏电池保护层并减少活性锂的数量。 最后,在不影响安全性或使用寿命的情况下实现更高的能量密度仍然是一个持续的挑战。当前的设计通常需要权衡。例如,增加能量密度会降低热稳定性,使电池更容易过热或退化。这种平衡行为使材料选择和电池架构复杂化。因此,电动汽车市场对能够在各个方面提供的创新解决方案有更大的需求。 电动汽车电池中的先进材料 性能、安全性和可持续性方面的最新发展极大地改进了EV电池。一些关键创新包括以下内容: 1.硅基阳极 工程师越来越多地将硅基阳极集成到锂离子电池中,以提高能量密度。与石墨阳极相比,硅具有更高的锂存储容量,可能会增加电池续航里程。然而,循环期间的体积膨胀需要纳米级工程和复合材料等解决方案来保持结构完整性。 2.固态电解质 这些材料作为液体电解质的更安全替代品而受到关注。它们通过消除易燃组件来降低热失控的风险。此外,它们还支持使用锂金属阳极,从而提高能量密度。固态电池还可以在10分钟内充电,并在80次充电循环后保持6,000%的容量。目前的研究重点是提高离子电导率和扩大生产以实现商业可行性。 3.高镍阴极 高镍阴极提高了能量密度,同时减少了对钴的依赖,钴是一种昂贵且存在争议的材料。它们提高了电池续航里程和功率输出。然而,它们对降解和热不稳定性的敏感性带来了一些问题,先进的涂层和掺杂技术可能会解决。 4.硫化物固态材料 硫化物固态材料是下一代固态电池的有前途的组件。它们具有出色的离子电导率和柔韧性,使其适用于大规模应用。它们与高容量阳极兼容,进一步提高了它们彻底改变EV电池设计的潜力。 5.石墨烯与碳纳米管 石墨烯和碳纳米管可以提高电池的导电性和耐用性。这些材料有助于加快充放电循环并提高机械稳定性,尤其是在高能量密度电池中。研究这些材料的可扩展制造工艺对于提高采用率至关重要。 在EV电池中利用先进材料的策略 利用先进材料可能会带来成本、可持续性和可扩展性方面的挑战。以下方法有助于克服问题,同时提高性能和效率: 1.采用纳米技术和2D材料 纳米技术和2D材料使工程师能够实现更高的性能,同时最大限度地减少重量和成本。例如,石墨烯的导电性和机械强度改善了电池内的电子流动。虽然这种2D材料提高了充电速度,但它减少了运行过程中的能量损失。将这种材料加入电池电极,设计人员可以在不牺牲性能的情况下实现更轻、更高效的设计。 2.根据应用需求优化材料选择 设计下一代电动汽车电池需要了解特定的性能需求,例如能量密度、安全性、充电速度或成本效益。然后,工程师选择与这些目标相关的材料,以最大限度地提高电池性能,同时应对挑战。例如,芝加哥大学的研究人员使用碳纳米管复合材料开发了一种锂硫电池,以克服硫在充电循环过程中降解的趋势。结果是原型的能量密度是传统锂离子电池的三倍 。如果工程师想要实现卓越的性能和更长的电池寿命,他们可以考虑这种类型的创新。 3.尝试新的制造技术 3D打印等新的制造方法可以改进电池生产流程并创造尖端设计。3D打印可以更精确地制造电池组件,实现优化材料使用和能量密度的复杂设计。借助3D打印,设计师可以创建具有可定制形状和结构的电极,从而确保更好的离子流和更高的性能。例如,印刷的多孔电极为反应提供了更大的表面积,从而提高了充电速率和整体电池容量。 4.数字孪生与预测建模降低原型开发成本 先进的原型技术为降低研发成本、加速动力电池开发提供了创新路径。工程师可利用数字孪生技术构建电池系统的虚拟镜像,模拟不同工况下的性能表现。这项突破性技术既能实现设计的快速迭代优化,又能减少材料浪费与制造成本。通过实时仿真,研发团队可在早期阶段识别潜在问题,确保更顺畅的产业化过渡。 预测性人工智能(AI)物理模型进一步强化了这一流程:基于机器学习算法分析材料相互作用,预测电池长期演变规律。该系统不仅能定位性能薄弱环节,更能为材料优化提供数据洞见,最终实现效率最大化。 5.使用轻量化材料提升能效 轻量化材料对于提高能效、延长续航和提升整体性能至关重要。以长纤维热塑性塑料(LFTs)为例,其材料密度较金属减轻40%,有效降低电池包重量,从而提升能源效率并扩展车辆续航里程。LFTs特别适用于替代电池外壳和支撑结构中的重金属部件。这类材料不仅能增强设计灵活性,还具备优异的抗冲击性能,完全满足电动汽车严苛的应用要求。此外,改用热塑性材料可显著降低生产和运输成本,助力制造商打造更高能效、更具成本优势的电动车型,以应对市场对高性能车辆日益增长的需求。 电动汽车电池设计的创新突破 采用先进材料是推动下一代电动汽车性能跃升的必由之路。这不仅能够满足电动汽车市场快速增长的需求,更能提供更安全、高效且环保的电池解决方案。随着行业不断发展,工程师需要持续突破技术边界。当下对这些先进技术的投入,将为构建更清洁、更电气化的未来奠定坚实基础。
  • 《纳米复合材料或将成为下一代航空材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-03
    • 一代材料,一代飞机。 1903年,莱特兄弟制造的世界上第一架飞机“飞行者一号”迈出了人类征服空天的第一步,彼时的飞机机体主要由木材和布制成;20世纪20年代,高强度的钢和铝合金逐渐代替了木材,为飞机插上了钢铁之翼; 50年代,耐热性更好的钛合金开始登上历史舞台; 80年代,高性能铝合金以其轻质高强的特性逐渐获得人们的青睐,成为飞机机体的主要结构材料;21世纪,复合材料以其更低的密度、更高的强度以及强大的可设计性等诸多特点开始代替部分传统材料,大型客机A350和B787上高性能复合材料用量均达到飞机结构用量的50%以上。未来,航空材料又将走向何方?欧洲最大的飞机制造商——空中客车公司,将目光转向了纳米材料。 8月31日,空客(北京)工程技术中心与中国科学院苏州纳米技术与纳米仿生研究所(以下简称苏州纳米所)在苏州举行了合作签约仪式,正式成立航空纳米材料联合实验室,主要合作内容包括航空纳米复合材料高导电、高韧性化技术以及在线高精度监测技术开发等。“这是空中客车中国公司在航空纳米复合材料领域与中国研究团队的第一次合作。”空客(北京)工程技术中心总经理程龙告诉科技日报记者。 苏州纳米所长期专注纳米材料研发,在国际上较早开展高性能碳纳米纤维与薄膜等材料研发和工程化,其产品性能和产能目前均处于国际先进水平。这与空中客车中国公司在航空先进材料方面的发展规划高度切合,也为双方合作奠定了坚实的技术基础。 “目前飞机上应用最多的复合材料为碳纤维复合材料。与传统金属材料相比,碳纤维复合材料密度低、强度高、可设计性强。然而,碳纤维复合材料尚存在诸多不足之处,如韧性差、导电性差、成本高以及在线健康监测困难等,限制了复合材料在航空领域更大规模的应用。” 苏州纳米所研究员吕卫帮表示,经过多年努力,苏州纳米所的研究团队采用多种制备技术,成功生产碳纳米管薄膜,成为了目前国际上少有的能够制造连续碳纳米管薄膜的科研机构。 碳纤维复合材料的制备方法之一是把一层层铺设的碳纤维和树脂经过加压高温固化成型,层间性能较差。吕卫帮表示:“我们希望,通过碳纳米材料与传统碳纤维材料进行复合,增强碳纤维复合材料的层间性能,解决其存在的上述问题。” 事实上,除了在航空产业中的应用,碳纳米管薄膜产品已经出现在我们的日常生活中。记者在苏州纳米所展厅中看到了一件冲锋衣。吕卫帮介绍,这件冲锋衣背部缝合了碳纳米管薄膜,有效利用了碳纳米管薄膜的高效电加热特性。这块边长仅有20cm左右的薄膜连接上充电宝后,可持续加热5—6小时,从而大幅度提高冲锋衣的防寒能力。 吕卫帮表示,苏州纳米所将继续攻关纳米航空材料低成本制备、防/除冰、电磁屏蔽等技术,一方面推进纳米技术在航空、航天等高端产业中的应用,另一方面推动尖端技术走向市场,服务百姓,提升社会生活质量。