《LG化学尖端材料新战略:下一代显示 + 未来出行》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-06-28
  • 近年来,LCD技术以其优异的显示性能和成熟的技术,占据了显示市场的绝对主流。同时,电视生产企业为了满足消费者对产品升级和更新换代的需求变化,也在不断加大OLED等下一代显示技术的产品研发。

    数据显示,2019年全球OLED显示面板出货量已达7.34亿片,到2022年出货量或将突破9亿片。OLED电视作为高端市场的主流技术,需求预计从2019年的300万台增至2024年的951万台。

    为更快响应客户需求变化的趋势,LG化学从未来市场和客户导向的角度出发,于去年4月组建尖端材料事业本部,将旗下产品重组为IT材料、汽车材料和产业材料三大事业部。

    IT材料事业
    OLED显示材料

    继今年年初出售光刻胶以及退出玻璃基板业务之后,近日LG化学又将LCD偏光片业务出售给宁波杉杉。偏光片作为液晶显示的核心尖端材料,目前全球只有为数不多的企业掌握该技术。依托LG化学多年积累的核心技术和运营经验,结合国内企业的本地化运营优势,此次出售将是LG化学与国内企业的又一次双赢合作。

    未来,LG化学将加快显示材料事业战略调整步伐,集中于下一代的OLED显示材料,加强对大型OLED电视偏光片、封装膜、中小型P-OLED(塑料OLED)偏光片、工艺保护膜以及OLED发光层和共通层的研发。

    汽车材料事业
    高强度轻量化材料

    随着旨在改善环境的全球汽车尾气排放限制规定的加强,汽车车身轻量化技术将成为今后重要的竞争要素。因此,LG化学未来将以工程塑料(EP)等为中心开发出不同性能的材料,以加强全球客户的应对能力。

    产业材料事业
    电池核心材料

    LG化学将专注于加速提升电池四大原材料之一的正极材料的产品技术,不断确保动力电池的下一代核心材料技术。

    未来,LG化学将从客户和应用的角度出发,提升产品策划、研发能力,发掘和培养未来显示及电动出行等可持续发展领域的新事业新产品。

相关报告
  • 《如何利用先进材料提高下一代EV电池的效率》

    • 来源专题:工程机械与高端装备
    • 编译者:Hazel
    • 发布时间:2025-05-07
    • 随着电动汽车需求激增,对高效可靠电池技术的需求日益迫切。先进材料将成为突破下一代动力电池性能瓶颈的核心钥匙,工程师需通过以下战略布局引领电动出行革命。 电动汽车电池面临的挑战 由于多种因素,电动汽车市场目前在电池设计方面面临巨大压力。一个主要问题是采购原材料,例如锂、钴、镍和石墨。这些物品对于当今EV电池的功能至关重要,但它们的需求正在飙升。研究人员预测,到2050年,需求将增长26倍,其中钴增长6倍,镍增长12倍,石墨增长9倍。由于全球努力实现交通脱碳,从而加剧了资源争夺,供应链紧张导致成本飙升。 另一个挑战是温度对电池性能和使用寿命的影响。高温会加速电动汽车电池内的化学反应速度,导致热失控和锂镀等问题。这些情况会降低电池质量,损坏电池保护层并减少活性锂的数量。 最后,在不影响安全性或使用寿命的情况下实现更高的能量密度仍然是一个持续的挑战。当前的设计通常需要权衡。例如,增加能量密度会降低热稳定性,使电池更容易过热或退化。这种平衡行为使材料选择和电池架构复杂化。因此,电动汽车市场对能够在各个方面提供的创新解决方案有更大的需求。 电动汽车电池中的先进材料 性能、安全性和可持续性方面的最新发展极大地改进了EV电池。一些关键创新包括以下内容: 1.硅基阳极 工程师越来越多地将硅基阳极集成到锂离子电池中,以提高能量密度。与石墨阳极相比,硅具有更高的锂存储容量,可能会增加电池续航里程。然而,循环期间的体积膨胀需要纳米级工程和复合材料等解决方案来保持结构完整性。 2.固态电解质 这些材料作为液体电解质的更安全替代品而受到关注。它们通过消除易燃组件来降低热失控的风险。此外,它们还支持使用锂金属阳极,从而提高能量密度。固态电池还可以在10分钟内充电,并在80次充电循环后保持6,000%的容量。目前的研究重点是提高离子电导率和扩大生产以实现商业可行性。 3.高镍阴极 高镍阴极提高了能量密度,同时减少了对钴的依赖,钴是一种昂贵且存在争议的材料。它们提高了电池续航里程和功率输出。然而,它们对降解和热不稳定性的敏感性带来了一些问题,先进的涂层和掺杂技术可能会解决。 4.硫化物固态材料 硫化物固态材料是下一代固态电池的有前途的组件。它们具有出色的离子电导率和柔韧性,使其适用于大规模应用。它们与高容量阳极兼容,进一步提高了它们彻底改变EV电池设计的潜力。 5.石墨烯与碳纳米管 石墨烯和碳纳米管可以提高电池的导电性和耐用性。这些材料有助于加快充放电循环并提高机械稳定性,尤其是在高能量密度电池中。研究这些材料的可扩展制造工艺对于提高采用率至关重要。 在EV电池中利用先进材料的策略 利用先进材料可能会带来成本、可持续性和可扩展性方面的挑战。以下方法有助于克服问题,同时提高性能和效率: 1.采用纳米技术和2D材料 纳米技术和2D材料使工程师能够实现更高的性能,同时最大限度地减少重量和成本。例如,石墨烯的导电性和机械强度改善了电池内的电子流动。虽然这种2D材料提高了充电速度,但它减少了运行过程中的能量损失。将这种材料加入电池电极,设计人员可以在不牺牲性能的情况下实现更轻、更高效的设计。 2.根据应用需求优化材料选择 设计下一代电动汽车电池需要了解特定的性能需求,例如能量密度、安全性、充电速度或成本效益。然后,工程师选择与这些目标相关的材料,以最大限度地提高电池性能,同时应对挑战。例如,芝加哥大学的研究人员使用碳纳米管复合材料开发了一种锂硫电池,以克服硫在充电循环过程中降解的趋势。结果是原型的能量密度是传统锂离子电池的三倍 。如果工程师想要实现卓越的性能和更长的电池寿命,他们可以考虑这种类型的创新。 3.尝试新的制造技术 3D打印等新的制造方法可以改进电池生产流程并创造尖端设计。3D打印可以更精确地制造电池组件,实现优化材料使用和能量密度的复杂设计。借助3D打印,设计师可以创建具有可定制形状和结构的电极,从而确保更好的离子流和更高的性能。例如,印刷的多孔电极为反应提供了更大的表面积,从而提高了充电速率和整体电池容量。 4.数字孪生与预测建模降低原型开发成本 先进的原型技术为降低研发成本、加速动力电池开发提供了创新路径。工程师可利用数字孪生技术构建电池系统的虚拟镜像,模拟不同工况下的性能表现。这项突破性技术既能实现设计的快速迭代优化,又能减少材料浪费与制造成本。通过实时仿真,研发团队可在早期阶段识别潜在问题,确保更顺畅的产业化过渡。 预测性人工智能(AI)物理模型进一步强化了这一流程:基于机器学习算法分析材料相互作用,预测电池长期演变规律。该系统不仅能定位性能薄弱环节,更能为材料优化提供数据洞见,最终实现效率最大化。 5.使用轻量化材料提升能效 轻量化材料对于提高能效、延长续航和提升整体性能至关重要。以长纤维热塑性塑料(LFTs)为例,其材料密度较金属减轻40%,有效降低电池包重量,从而提升能源效率并扩展车辆续航里程。LFTs特别适用于替代电池外壳和支撑结构中的重金属部件。这类材料不仅能增强设计灵活性,还具备优异的抗冲击性能,完全满足电动汽车严苛的应用要求。此外,改用热塑性材料可显著降低生产和运输成本,助力制造商打造更高能效、更具成本优势的电动车型,以应对市场对高性能车辆日益增长的需求。 电动汽车电池设计的创新突破 采用先进材料是推动下一代电动汽车性能跃升的必由之路。这不仅能够满足电动汽车市场快速增长的需求,更能提供更安全、高效且环保的电池解决方案。随着行业不断发展,工程师需要持续突破技术边界。当下对这些先进技术的投入,将为构建更清洁、更电气化的未来奠定坚实基础。
  • 《Micro-LED或将成为下一代主流显示技术 我国格局初具规模》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-06-12
    • 自1950年第一台彩色CRT电视发明以来,CRT凭借其出色的特性在显示市场上占据了数十年的历史。直到2000年,液晶显示器(LCD)这种新技术出现,LCD通过降低成本和优化产品性能,很快便占据了显示市场的主导地位。但是,LCD显示器存在诸如响应时间慢,转换效率差和色彩饱和度低等主要缺点。近年来,新的显示技术变得愈加成熟,例如有机发光二极管(OLED)显示器和发光二极管(LED)显示。与LCD显示技术相比,OLED显示技术具有自发光,宽视角,高对比度,低功耗,响应速度快的优点。但是,OLED在成本控制、量产能力和有机材料等的局限性,在消费电子市场中的占有率仍低于LCD,传统上的LED显示则更多应用于显示器背光模组或大型户外屏幕。 随着显示产业结构性调整步伐的加快以及5G时代新应用的兴起,“5G+8K”概念成为消费电子领域的目标,显示产品的升级换代成为行业发展的必然。Micro-LED作为新一代主流显示技术开始兴起。与传统的LCD和OLED相比,Micro-LED显示具有自发光、高效率、低功耗、高集成、高稳定性、高响应速度等优良特性,已经在显示、光通信、生物医疗领域获得了相关的应用,未来,Micro-LED技术将进一步扩展到增强现实/虚拟现实、空间显示、可穿戴设备、车载应用等诸多领域。而Mini-LED则是Micro-LED开发过程中的一个阶段性技术。据Yole预测,至2025年基于Micro-LED和Mini-LED技术的产品如高端电视机、手机、平板、手表等将逐步上市,出货量可达3.3亿只模组,市场产值将超过100亿美元。 推动新一轮显示产品升级换代 Micro-LED显示是指将微米级半导体发光二极管(LED),以矩阵形式高密度地集成在一个芯片上的显示技术,是新型显示技术与LED技术二者复合集成的综合性技术。在过去的20年里,Micro-LED引起了人们的广泛关注,从早期的实验室开发阶段逐渐进入到公司的开发项目,部分产品已经进入了商用阶段。Micro-LED因其体积小、灵活性高、易于拆解合并等特点,可以在现有的最小至最大尺寸的显示应用场合中实现部署,在很多情况下也将比LCD和OLED发挥更独特的效果。Micro-LED极有可能成为具有颠覆性和变革性的下一代主流显示技术,推动新一轮显示产品的升级换代。近年来Mini-LED在液晶显示背光源应用、会展广告、拼接屏、虚拟现实等领域也得到了快速应用,其点间距(Pixel Pitch)记录也在不断刷新。 Micro-LED技术产业链主要由衬底和外延材料、芯片器件、颜色混合(RGB或量子点激发)、IC驱动基板链接(巨量转移或单片集成)、检测和修复五大部分组成,市场应用的需求不断反推着每一个产业链环节提出更多新的技术指标和要求,其中包括材料、工艺、设备等关键技术领域。全世界范围内各大公司及科研院所相继投入了大量人力物力进行研发布局,据Touch Display Research的不完全统计,全世界目前从事Micro-LED研究的单位超过了160家,其中有60余家分布在中国。 随着我国经济与科技的快速发展,国民消费能力和市场需求的逐步增强,我国在传统显示的产业规模已经处于全球领先地位,加之我国近年来第三代半导体材料技术的加大投入,产能供应充足,为Micro-LED的研究及其产业化积累了快速发展的技术基础以及应用需求基础。 产业化应用将使很多行业有革命性发展 在国家产业政策引导下,LED领域、显示领域的相关企业和科研所投入了大量的资源,不断突破关键技术障碍,加速了Micro-LED的产业化发展。 Micro-LED的应用市场占比最高的主要是显示应用,目前已经在小间距(<2mm)大屏幕显示开始应用,并且逐渐向高端电视市场、手机平板、笔记本、汽车应用等领域渗透。 针对Micro-LED的高PPI显示特性,目前主要应用于VR/AR、投影显示等,据IDC预测,至2023年,中国VR/AR市场支出规模将达到652.1亿美元,到2027年Micro-LED屏出货量有望突破千万只。针对Micro-LED的中低PPI显示特性,主要应用在小尺寸穿戴设备、手机平板和电脑显示、电视显示、超大屏显示等领域,其中智能手表是Micro-LED技术最有机会率先突破的细分市场,LED inside预测穿戴产品将在2020-2021年迎来快速增长。 除了显示应用外,Micro-LED在车载应用、可见光通行、生物医学应用、陈列照明等领域的应用也在进一步扩展,未来伴随着Micro-LED良率的提升以及产品的量产,预计价格仍有大幅下降空间,商业化应用也将具有更强的竞争力。 从产业需求上讲,在VR/AR的应用上,对于VR/AR头戴式产品,要求显示屏具备高的像素密度(一般大于2000 PPI),全彩化显示,响应速度快,功耗低,寿命长等特性。高像素密度的关键是Micro-LED的微缩制程技术,还受显示驱动基板所限制,虽然Micro-LED在显示性能上虽然存在各种优势,但是技术仍处于发展初期阶段,应用需求的要求也很高,仍然有待继续发展和进步。 对于投影产品应用,要求显示屏具有好的光谱稳定性、寿命较长、色彩饱和度高以及较好的光源综合效率等,同时投影上应用所需的电流驱动较大,目前阵列Micro-LED在大电流驱动下的表现及其配套的封装散热机制仍有待开发研究。 在小尺寸穿戴设备方面,主流的穿戴设备主要包括智能手环和手表,要求显示屏的可靠显示以及长续航,因此需求屏幕本身的亮度高、功耗低、重量轻以及可靠性好。目前Micro-LED技术的挑战主要在于生产成本上。 在手机平板和电脑显示方面,目前主流的手机屏幕仍然还是LED与OLED,Trendforce预计Micro-LED将在2022年切入平板电脑市场,2023年切入手机市场,在显示画质亮度、对比度、色域、清晰度,以及功耗、寿命、可靠性等方面Micro-LED都可以实现较好的画质显示,目前Micro-LED主要面临巨量转移以及检测修复的技术问题和成本问题,需要靠Micro-LED成本的降低以及驱动电路的简化来进一步实现。 在高清电视屏幕方面,由于超高清电视以及8K显示的推广,对LED显示屏提出了更高解析度的需求。针对大尺寸显示上,目前的技术方案主要是通过大尺寸转移以及模块化拼接两种方式,主要的技术突破包括芯片的微型化、巨量转移与焊接、全彩化以及系统驱动方面等。 在车载应用方面,车载显示主要包括中控显示、仪表显示、数字后视镜以及抬头显示等,但是车载显示在产品的可靠性方面要求较高,包括防尘、抗震功能、高低温差测试等,性能上需求更高分辨率、交互联动、多屏化以及多形态化,要将Micro-LED整合到车载显示并实现量产,从上游的LED芯片制备、键合材料开发、转移技术及设备创新设计、驱动IC开发等都需要各环节的通力合作。 在可见光通信方面,近年来可见光通信发展迅速,传输速率不断提高,而Micro-LED具有功耗低、调制带宽高的特点,在可见光通信领域有很大应用潜力,比如高速通信、光电探测器、智能显示等,但目前可见光通信仍处于实验室研究阶段,在技术、应用、芯片以及标准制定等方面仍需要开发研究。 实际上,Micro-LED的产业化应用,将会带来许多行业的革命性发展,特别是显示产业的应用。随着技术的快速进展以及成本的优化,Micro-LED的市场接受度将会大幅提高,结合Micro-LED技术本身的特性,在显示、车载、光通信、生物医疗检测等领域也会逐渐渗透,预计市场也将超过万亿美元。 “产业+联盟”的格局初具规模 近日传出苹果在投资“百亿”生产Mini-LED产品的新闻,与此同时中国更多的一线大厂也纷纷入局,变成“Serious Players”,既有康佳、创维、海信、TCL、兆驰、小米、华为等终端产品大厂,也有京东方、华星光电、天马、雷曼光电、洲明科技、瑞丰光电、国星光电、奥拓电子、维信诺等面板与封装企业,以及三安光电、华灿、乾照、国星半导体等外延与芯片制造商。同时,还出现了CASA第三代半导体产业技术创新联盟Micro-LED专委会、广东省Micro-LED产业技术创新联盟等专业性组织,“产业+联盟”的格局初具规模。 在今年消费电子展CES 2020上,康佳携全球领先设计的首款Micro-LED产品Smart Wall惊艳亮相,实力诠释了中国的品牌科技力量。2019年8月,康佳集团与重庆璧山国家高新区正式签约,将在璧山投资300亿元建设康佳半导体光电产业园。一期将投资50亿元建立光电研究院及试产线,二期将投资300亿元建立光电产业基地,发展Micro-LED下一代显示技术项目,建设Micro-LED显示屏及终端产品等项目,预计项目满产后将形成一个超过千亿元规模及全球领先的光电技术中心。 2019年9月,康佳宣布拟出资15亿元成立重庆康佳半导体光电研究院,开展以Micro-LED产品为代表的氮化镓等化合物半导体技术与应用研发,推动半导体及相关产业的长远发展和布局。其核心技术团队更是具备有领先的Micro LED晶圆外延片设计&开发、芯片生产、巨量移转与修复等制程开发全链条整合能力。2019年10月,康佳“未来之镜”发布会上展示了首款“5G+8K”P0.68mm的Micro-LED 未来屏产品“Smart Wall”,采用了超高精度巨量转移技术,实现了近1亿颗微米级别的Micro-LED芯片的转移和键合,通过点对点的驱动实现对每个像素的精准控制。发布会上,诺贝尔奖得主中村修二教授现场体验后表示:“Micro LED可应用范围广,未来可覆盖手持设备、可穿戴设备、AR/VR、TV、视频墙等多个领域,预估2027年Micro LED的巨大市场将超过700亿美元”。2019年12月,康佳与LED显示屏供应商联建光电达成合作,致力于Mini-LED及Micro-LED大屏显示产品研发、生产制造,合力推进Mini-LED及Micro-LED新技术在公共视讯领域的商用化进程。2020年3月,康佳Micro-LED的研发生产正开始进入实质性阶段,开始进行MOCVD设备采购,向德国的沉积设备制造商Aixtron SE订购了多个AIX G5+C和AIX 2800G4-TM MOCVD系统,以建立基于GaN(氮化镓)和砷磷材料的Mini/Micro-LED的批量生产能力。 作为一家 LED产业的科技型企业,雷曼光电围绕5G+8K+AI的有机结合,以自主创新为发展之源,以市场需求和行业趋势为导向,聚焦打造基于COB先进技术的Micro-LED生态圈,在市场渠道扩展、军民融合产业生态体系等方面深化布局。2019年,雷曼光电成为中国航天事业战略合作伙伴。 2019年3月,雷曼光电发布点间距P0.9的COB微间距显示产品;同年7月,雷曼光电324寸超大尺寸Micro-LED超高清显示屏全球首发;2020年2月,雷曼光电P0.6 Micro-LED超高清显示屏在荷兰ISE展全球首发。 围绕Micro-LED的研发产业化,雷曼开发了一整套全新的倒装COB技术,包括微米级LED芯片转移技术、LED芯片与基板的键合技术、微间距微米级LED芯片维修技术、COB封胶技术、模组墨色一致性技术、校正技术、微间距无缝拼接技术、高效散热技术,以及与新产品配套可量产的生产工艺与技术。截至目前,雷曼光电Micro-LED超高清显示屏已经实现在大数据中心、军事指挥中心、监控中心等领域的应用。未来雷曼光电还将借Micro-LED的可交互功能,逐步布局智慧会议室、超级家庭影院等应用场景。 兆驰股份作为国内电视ODM的龙头企业,于2011年布局LED封测业务,后逐步向下游照明,及上游芯片延伸,目前已形成LED全产业链的协同发展。2017年,兆驰节能正式启动Mini RGB显示项目,并作为公司战略重点投入大量资源,于2018年年中正式量产,公司基于CSP倒装技术上的深厚沉淀,研发出了倒装Mini LED,组建了P0.6mm的Mini RGB显示封装量产线,全面强化Mini RGB封装工艺制程能力,目前已实现P0.6、P0.7、P0.9三款Mini RGB产品的量产,可实现110寸、135寸、162寸下的4K显示。同时兆驰半导体于2018年大量采购中微公司的Prismo A7系列的MOCVD设备,作为上游芯片资源的整合,为兆驰节能提供强大的芯片产能后盾。2019年12月,兆驰股份与江西南昌高新技术产业开发区签署投资协议,投资建设红黄光LED外延、芯片及Mini-LED、Micro-LED项目,投资10亿元用于红黄光LED外延及芯片的研发、生产和销售,计划于2020年相关设备安装调试到位并正式投入运营,预计投产后年产能(折合4寸片)可达120万片。 三安光电作为化合物半导体的龙头企业,具有从LED到化合物半导体的垂直化产业链布局,并于2015年初开始积极布局Mini-LED和Micro-LED的研发产业化项目,目前在国内外 LED芯片厂商中处于领先地位。2018年2月,三安光电与三星电子签订了《预付款协议》,批量供货LED芯片。2019年4月,三安光电宣布投资120亿元在湖北葛店建设Mini/Micro-LED外延与芯片基地,主要生产经营Mini/Micro-LED 外延与芯片产品及相关应用的研发、生产、销售。2020年3月,TCL华星与三安光电签约共同合资成立联合实验室,注资 3 亿人民币,将开展 Micro-LED 显示技术端到端开发,重点攻克 Micro-LED 显示工程化制造的芯片、转移、Bonding、彩色化、检测、修复等关键技术,从事可穿戴显示、高清移动显示、车载显示、高清大尺寸显示、超大尺寸拼接商用显示样机的研发及试产工作。加速 Micro-LED 的试产与应用,实现从新型显示材料、工艺、设备、产线方案到自主知识产权的全面生态布局。 如今,Micro-LED/Mini-LED产业已经进入初步打响价格战的阶段。在2019 Micro-LED产业技术峰会上,雷曼光电董事长与康佳集团Micro-LED团队负责人掰着手指计算价格成本的情景让人非常感动。大家一致认为离Micro-LED产品走进家用的那天已经不远了。 目前,中国已经成为全球最大的LED和LCD生产基地,在Micro-LED领域产业链上的配套也比较完整,中国已经初步具备在Micro-LED领域产业链协同发展的条件,同时也有望通过发挥LED的产业优势,实现我国在高端信息显示产业的世界话语权。