《如何利用先进材料提高下一代EV电池的效率》

  • 来源专题:工程机械与高端装备
  • 编译者: Hazel
  • 发布时间:2025-05-07
  • 随着电动汽车需求激增,对高效可靠电池技术的需求日益迫切。先进材料将成为突破下一代动力电池性能瓶颈的核心钥匙,工程师需通过以下战略布局引领电动出行革命。

    电动汽车电池面临的挑战

    由于多种因素,电动汽车市场目前在电池设计方面面临巨大压力。一个主要问题是采购原材料,例如锂、钴、镍和石墨。这些物品对于当今EV电池的功能至关重要,但它们的需求正在飙升。研究人员预测,到2050年,需求将增长26倍,其中钴增长6倍,镍增长12倍,石墨增长9倍。由于全球努力实现交通脱碳,从而加剧了资源争夺,供应链紧张导致成本飙升。

    另一个挑战是温度对电池性能和使用寿命的影响。高温会加速电动汽车电池内的化学反应速度,导致热失控和锂镀等问题。这些情况会降低电池质量,损坏电池保护层并减少活性锂的数量。

    最后,在不影响安全性或使用寿命的情况下实现更高的能量密度仍然是一个持续的挑战。当前的设计通常需要权衡。例如,增加能量密度会降低热稳定性,使电池更容易过热或退化。这种平衡行为使材料选择和电池架构复杂化。因此,电动汽车市场对能够在各个方面提供的创新解决方案有更大的需求。

    电动汽车电池中的先进材料

    性能、安全性和可持续性方面的最新发展极大地改进了EV电池。一些关键创新包括以下内容:

    1.硅基阳极

    工程师越来越多地将硅基阳极集成到锂离子电池中,以提高能量密度。与石墨阳极相比,硅具有更高的锂存储容量,可能会增加电池续航里程。然而,循环期间的体积膨胀需要纳米级工程和复合材料等解决方案来保持结构完整性。

    2.固态电解质

    这些材料作为液体电解质的更安全替代品而受到关注。它们通过消除易燃组件来降低热失控的风险。此外,它们还支持使用锂金属阳极,从而提高能量密度。固态电池还可以在10分钟内充电,并在80次充电循环后保持6,000%的容量。目前的研究重点是提高离子电导率和扩大生产以实现商业可行性。

    3.高镍阴极

    高镍阴极提高了能量密度,同时减少了对钴的依赖,钴是一种昂贵且存在争议的材料。它们提高了电池续航里程和功率输出。然而,它们对降解和热不稳定性的敏感性带来了一些问题,先进的涂层和掺杂技术可能会解决。

    4.硫化物固态材料

    硫化物固态材料是下一代固态电池的有前途的组件。它们具有出色的离子电导率和柔韧性,使其适用于大规模应用。它们与高容量阳极兼容,进一步提高了它们彻底改变EV电池设计的潜力。

    5.石墨烯与碳纳米管

    石墨烯和碳纳米管可以提高电池的导电性和耐用性。这些材料有助于加快充放电循环并提高机械稳定性,尤其是在高能量密度电池中。研究这些材料的可扩展制造工艺对于提高采用率至关重要。

    在EV电池中利用先进材料的策略

    利用先进材料可能会带来成本、可持续性和可扩展性方面的挑战。以下方法有助于克服问题,同时提高性能和效率:

    1.采用纳米技术和2D材料

    纳米技术和2D材料使工程师能够实现更高的性能,同时最大限度地减少重量和成本。例如,石墨烯的导电性和机械强度改善了电池内的电子流动。虽然这种2D材料提高了充电速度,但它减少了运行过程中的能量损失。将这种材料加入电池电极,设计人员可以在不牺牲性能的情况下实现更轻、更高效的设计。

    2.根据应用需求优化材料选择

    设计下一代电动汽车电池需要了解特定的性能需求,例如能量密度、安全性、充电速度或成本效益。然后,工程师选择与这些目标相关的材料,以最大限度地提高电池性能,同时应对挑战。例如,芝加哥大学的研究人员使用碳纳米管复合材料开发了一种锂硫电池,以克服硫在充电循环过程中降解的趋势。结果是原型的能量密度是传统锂离子电池的三倍 。如果工程师想要实现卓越的性能和更长的电池寿命,他们可以考虑这种类型的创新。

    3.尝试新的制造技术

    3D打印等新的制造方法可以改进电池生产流程并创造尖端设计。3D打印可以更精确地制造电池组件,实现优化材料使用和能量密度的复杂设计。借助3D打印,设计师可以创建具有可定制形状和结构的电极,从而确保更好的离子流和更高的性能。例如,印刷的多孔电极为反应提供了更大的表面积,从而提高了充电速率和整体电池容量。

    4.数字孪生与预测建模降低原型开发成本

    先进的原型技术为降低研发成本、加速动力电池开发提供了创新路径。工程师可利用数字孪生技术构建电池系统的虚拟镜像,模拟不同工况下的性能表现。这项突破性技术既能实现设计的快速迭代优化,又能减少材料浪费与制造成本。通过实时仿真,研发团队可在早期阶段识别潜在问题,确保更顺畅的产业化过渡。

    预测性人工智能(AI)物理模型进一步强化了这一流程:基于机器学习算法分析材料相互作用,预测电池长期演变规律。该系统不仅能定位性能薄弱环节,更能为材料优化提供数据洞见,最终实现效率最大化。

    5.使用轻量化材料提升能效

    轻量化材料对于提高能效、延长续航和提升整体性能至关重要。以长纤维热塑性塑料(LFTs)为例,其材料密度较金属减轻40%,有效降低电池包重量,从而提升能源效率并扩展车辆续航里程。LFTs特别适用于替代电池外壳和支撑结构中的重金属部件。这类材料不仅能增强设计灵活性,还具备优异的抗冲击性能,完全满足电动汽车严苛的应用要求。此外,改用热塑性材料可显著降低生产和运输成本,助力制造商打造更高能效、更具成本优势的电动车型,以应对市场对高性能车辆日益增长的需求。

    电动汽车电池设计的创新突破

    采用先进材料是推动下一代电动汽车性能跃升的必由之路。这不仅能够满足电动汽车市场快速增长的需求,更能提供更安全、高效且环保的电池解决方案。随着行业不断发展,工程师需要持续突破技术边界。当下对这些先进技术的投入,将为构建更清洁、更电气化的未来奠定坚实基础。


  • 原文来源:https://www.manufacturing.net/energy/news/22938248/how-to-leverage-advanced-materials-for-nextgen-ev-battery-efficiency
相关报告
  • 《利用拓扑半金属提高二维材料电子的能源效率》

    • 来源专题:后摩尔
    • 编译者:shenxiang
    • 发布时间:2020-06-24
    • 二维半导体被誉为下一代超小型计算电子的新选择。由于它们的超薄体通常只有几个原子厚,当它被制成场效应晶体管时,无需复杂的器件结构就可以有效地控制电开关操作。 2016年,世界经济论坛将二维材料列为未来电子领域十大新兴技术之一。2018年,石墨烯——一种具有特殊性能的二维材料——在世界经济论坛上再次被强调为革新传感器技术的关键等离子体材料之一。 当制造晶体管时,二维半导体需要被两种金属(称为源极和漏极)电接触。然而,这样的过程会在电源处产生一个不可接受的大电阻,即通常所说的接触电阻,并耗尽元件。较大的接触电阻会对晶体管的性能产生不利影响,并在器件中产生大量的热量。 这些不利影响会严重限制二维材料在半导体工业中的潜力。到目前为止,寻找一种与二维半导体结合时不会产生大接触电阻的金属仍是一项正在进行的探索。 新加坡理工大学(SUTD)领导的一个研究小组在《物理评论应用》杂志上报道,他们发现了一种解决二维半导体接触电阻问题的新策略。通过进行最新的密度泛函理论(DFT)计算模拟,SUTD研究小组发现,Na3Bi(一种新近发现的拓扑半金属,其导电性质受晶体对称性保护)的超薄膜,只有两个原子层,可以用作具有超低接触电阻的2D半导体的金属接触。 SUTD研究小组的首席科学家之一Yee Sin Ang博士说:“我们发现Na3Bi和2D半导体之间形成的肖特基势垒高度是业界常用的许多金属中最低的一种。”。 简而言之,肖特基势垒是金属和半导体之间形成的一层薄的绝缘体层。肖特基势垒高度对接触电阻有重要影响。小肖特基势垒高度是实现低接触电阻的理想选择。 发现Na3Bi和两种通常研究的二维半导体MoS2和WS2之间形成的肖特基势垒大大低于许多常用金属,如金、铜和钯,揭示了拓扑半金属薄膜在设计具有最小接触电阻的节能二维半导体器件时的强度。 SUTD研究小组的DFT专家曹列茂博士说:“重要的是,我们发现当Na3B与二维半导体接触时,二维半导体的固有电子性质保持不变。”。 二维半导体可以与接触的金属“熔合”在一起,变成金属。金属化的二维半导体失去了其原始的电学特性,这是电子学和光电子应用非常需要的。研究小组发现,Na3Bi薄膜不会使二维半导体金属化。因此,使用Na3Bi薄膜作为与2D半导体的金属接触对器件应用(如光电探测器、太阳能电池和晶体管)非常有利。 “我们将二维材料和拓扑材料相结合的开创性概念将为节能电子设备的设计提供一条新途径,这对于减少物联网和人工智能等先进计算系统的能源足迹尤为重要,该研究团队的首席研究员、SUTD科学、数学和技术集群的负责人Ricky L.K.Ang教授评论道。
  • 《为下一代太阳能电池制造的独特材料》

    • 来源专题:可再生能源
    • 编译者:chenss
    • 发布时间:2015-08-06
    • 研究人员已经开发出了一种材料,这种材料可以为目前正在使用的混合型太阳能电池提供更廉价的替代物。由该化学家团队创造的这种半导体的效率已被确认。 考纳斯科技大学(KTU)有机化学实验室的研究人员已开发出可为目前正在使用的混合型太阳能电池提供更廉价选择的材料。由KTU的化学家团队创造的半导体的效率在瑞士洛桑联邦技术研究所被确认。 "The material created by us is considerably cheaper and the process of its synthesis is less complicated than that of the currently used analogue material. Also, both materials have very similar efficiency of converting solar energy into electricity. That means that our semiconductors have similar characteristics to the known alternatives, but are much cheaper," says professor Vytautas Getautis, head of the chemistry research group responsible for the discovery. The solar cells containing organic semiconductors created at KTU were constructed and tested by physicists at Lausanne. The tests revealed outstanding results: the effectivity of the cells' converting solar energy into electricity was 16.9 percent. There are only a few organic semiconductors in the world affording such a high solar cell efficiency. Prof Getautis says that the material created at KTU will be used in the construction of future solar cells: almost all solar cells are made from inorganic semiconductors. Hybrid, semi-organic solar cells are still being developed and perfected at the research centres all over the world. KTU and Swiss Federal Institute of Technology Lausanne registered the invention at the European Patent Office. The work was featured in Angewandte Chemie International Edition.