《植物2.0:用摄像系统鉴别耐胁迫基因》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-12-13
  • In the past 70 years, the world's population tripled to more than seven billion and average global temperature increased by nearly one degree Celsius. Population growth and climate change are associated with big challenges facing modern agriculture. Karlsruhe Institute of Technology (KIT) combines computer science and biology to identify genes that make plants more resistant to stress factors, such as drought and saline soils.

    "To cope with changed requirements on agriculture, development of new plant species is indispensable. For this, we need a better understanding of important crops, such as rice that is considered the most important source of food worldwide," Dr. Michael Riemann of the Molecular Cell Biology Division of KIT's Botanical Institute explains. Together with the startup da-cons, he developed the RiSeGrAn (Rice Seedlings Growth Analysis) system that analyzes the growth of rice seedlings. By comparing genetically different species, conclusions can be drawn with respect to the function of certain genes for resistance against a variety of stress factors. As research concentrates on the first phases of seedling development, gene variations can be classified more quickly. The system uses an infrared camera to take photos of plant seedlings growing in darkness. "At first, the seedlings have to grow in the dark for them to become highly sensitive to light. Then, we can measure the effect of the light on the seedlings," Riemann explains. In the next step, the system evaluates the photos automatically.

    Setup of the RiSeGrAn System

    The system is accommodated in a box of 50 times 50 centimeters in dimension. The interior is illuminated by 20 infrared LEDs. "The seedlings change their appearance depending on whether they grow in the dark or in light. However, the system is to observe the plants and not to influence them. For this reason, the box is designed to prevent visible light from falling on the seedlings," Riemann says. The seedlings are arranged in a sealed plate in water agar, a transparent nutrient medium that supplies the seedlings with water. For a detailed documentation of plant growth, the system takes a picture every hour for a period of ten days in a computer-controlled manner without a person having to look into the box. Algorithms developed by da-cons GmbH are used to determine from the photos the lengths of the shoot, the first leaf, and the root. In addition, the computer transmits the photos automatically to a server, where they can be look at by the researchers.

    A video illustrates the RiSeGrAn system: http://da-cons.de/uploads/images/videos/RiSeGrAn__description.mp4

    "By means of the system, we can discover unknown properties of known genes. For example, we can precisely measure parameters, such as the time of germination or growth of certain tissues," Riemann explains. "Our measurements can support molecular biology studies by identifying the genes that make plants more resistant to certain stress factors, e.g. saline soils."

    OpenData Platform

    In the next step, the developers of the RiSeGrAn project plan to establish an online OpenData platform based on the data collected. Scientists can then publish their data on this platform. OpenData means that raw data obtained from experiments are to be made available to other scientists. Researchers are enabled to check initial results or to study the data for certain characteristics. "Based on the data of the RiSeGrAn system, we can now test how to transfer them to the OpenData platform in the best way. In addition, we can estimate the required computer capacity and study various ways of presenting the results," Dr. Michael Kreim, Development Director of da-cons GmbH, says. "In general, technical background processes and the user interface can be developed better with realistic data than with test data." da-cons uses the data sets of the RiSeGrAn project to determine requirements to be met by the platform and to test the latter.

    Story Source:

    Materials provided by Karlsruhe Institute of Technology. Note: Content may be edited for style and length.

  • 原文来源:https://www.sciencedaily.com/releases/2016/12/161208090110.htm
相关报告
  • 《研究阐述乙烯在植物温度胁迫响应中的作用》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-05-11
    • 近日,中国农业科学院茶叶研究所茶树遗传育种创新团队系统总结了乙烯在植物温度胁迫响应中的作用及其调控机制。相关成果以综述形式在线发表于《植物科学趋势(Trends in Plant Science)》。 乙烯是一种气态植物激素,在植物的生长发育和逆境胁迫响应中发挥着重要作用。研究系统总结了目前乙烯合成和信号转导途径研究的最新进展,剖析了高温和低温等不同程度的温度胁迫对乙烯合成的影响,阐述了乙烯信号在植物响应温度胁迫中的作用及其调控机制,并阐释了乙烯和其他植物激素在植物温度胁迫响应中的交叉影响,提出了耐温度胁迫作物育种策略,研究对进一步改良茶树等植物的抗逆性提供了新思路。 该研究得到国家自然科学基金、国家重点研发计划、中国农业科学院农业科技创新工程等项目的资助。(通讯员:张璐君) 原文链接: https://www.cell.com/trends/plantscience/fulltext/S1360-1385(23)00081-X
  • 《昆明植物所报道蛋白质琥珀酰化修饰参与植物响应重金属胁迫》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-13
    •        植物是环境中重金属的主要接触者和传输者,解析植物对重金属的耐受和转运机制对于通过分子育种应对环境重金属污染具有重要意义:一方面,可以培育重金属低富集作物品种以保证食物安全;另一方面,可以培育重金属超富集植物资源通过植物提取去除环境中的重金属。转录组学、代谢组学和蛋白质组学等技术是研究植物响应重金属胁迫机制的常用手段,但这些技术只能从基因、代谢物和蛋白质的丰度变化上理解其对植物响应重金属的调控作用。蛋白质翻译后修饰(PTM)是一种有效调控蛋白质结构、功能、定位、活性和互作的生物学机制。目前,已在生物体中发现超过200种PTM类型,但许多PTM在植物体中的功能和作用机制都不清楚。   中国科学院昆明植物研究所的研究人员在通过转录组学和蛋白质组学联合分析蔓菁对重金属镉(Cd)胁迫的响应机制中发现乙酰基转移酶/去乙酰化酶的表达显著受到Cd胁迫的影响(Li et al., 2021, Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-020-11454-z),表明相关蛋白质翻译后修饰可能参与调控植物对Cd的响应。由于发生在蛋白质赖氨酸(K)上的酰基化修饰(如乙酰化、琥珀酰化、巴豆酰化等)通常存在crosstalk(有共同的调控基因),研究人员通过Western blot检测了蔓菁幼苗在Cd胁迫下的乙酰化、琥珀酰化和巴豆酰化修饰水平,发现3种酰基化修饰都对Cd胁迫有响应,其中琥珀酰化修饰(在琥珀酰辅酶A的介导下将一个负电荷四碳琥珀酰基转移到赖氨酸残基的伯胺上的过程)水平变化更为明显。为了探究琥珀酰化修饰在蔓菁响应Cd胁迫中的功能,研究人员利用对照组和Cd处理组蔓菁材料进行了定量琥珀酰化修饰组学分析。   研究结果总共鉴定到256个蔓菁蛋白质上的547个琥珀酰化修饰位点,这些琥珀酰化修饰的蛋白质定位在不同细胞组分并参与植物的各种生物学过程。在Cd(20 μM)处理8小时后,检测到8个蛋白质上的9个琥珀酰化位点的修饰强度发生显著变化(P < 0.05),这些差异的琥珀酰化修饰位点在十字花科植物中十分保守并且绝大多数位点都处在蛋白质的核心结构域上(图1),暗示这些琥珀酰化修饰位点对蛋白质的功能可能具有重要影响。   研究还发现3个差异琥珀酰化修饰位点发生在调控过氧化氢(H2O2)代谢和谷胱甘肽(GSH)代谢(植物对重金属解毒的2个重要过程)的3个关键酶上(图2):乙醇酸氧化酶(glycolate oxidase:K150位点下调)和过氧化氢酶(catalase 3:K396位点上调)分别调控H2O2的生成和降解,谷胱甘肽S-转移酶(glutathione S-transferase:K197位点下调)催化GSH和Cd离子结合。由于3种酶的活性在Cd胁迫下也发生显著变化(图2),推测3个差异琥珀酰化修饰位点可能通过调控相应蛋白质的活性增强蔓菁对Cd胁迫的耐受性。   该研究首次报道蛋白质琥珀酰化修饰参与植物响应重金属胁迫,为解析植物耐受和转运重金属的机制提供了新的视角和参考,研究结果以Quantitative Succinyl-Proteome Profiling of Turnip (Brassica rapa var. rapa) in Response to Cadmium Stress为题发表在MDPI旗下SCI期刊Cells上。李雄博士为论文的第一作者,杨永平研究员和许建初研究员为论文的共同通讯作者,研究得到了中国科学院青年创新促进会(2020387)和国家自然科学基金(31800226)的支持。