《植物2.0:用摄像系统鉴别耐胁迫基因》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-12-13
  • In the past 70 years, the world's population tripled to more than seven billion and average global temperature increased by nearly one degree Celsius. Population growth and climate change are associated with big challenges facing modern agriculture. Karlsruhe Institute of Technology (KIT) combines computer science and biology to identify genes that make plants more resistant to stress factors, such as drought and saline soils.

    "To cope with changed requirements on agriculture, development of new plant species is indispensable. For this, we need a better understanding of important crops, such as rice that is considered the most important source of food worldwide," Dr. Michael Riemann of the Molecular Cell Biology Division of KIT's Botanical Institute explains. Together with the startup da-cons, he developed the RiSeGrAn (Rice Seedlings Growth Analysis) system that analyzes the growth of rice seedlings. By comparing genetically different species, conclusions can be drawn with respect to the function of certain genes for resistance against a variety of stress factors. As research concentrates on the first phases of seedling development, gene variations can be classified more quickly. The system uses an infrared camera to take photos of plant seedlings growing in darkness. "At first, the seedlings have to grow in the dark for them to become highly sensitive to light. Then, we can measure the effect of the light on the seedlings," Riemann explains. In the next step, the system evaluates the photos automatically.

    Setup of the RiSeGrAn System

    The system is accommodated in a box of 50 times 50 centimeters in dimension. The interior is illuminated by 20 infrared LEDs. "The seedlings change their appearance depending on whether they grow in the dark or in light. However, the system is to observe the plants and not to influence them. For this reason, the box is designed to prevent visible light from falling on the seedlings," Riemann says. The seedlings are arranged in a sealed plate in water agar, a transparent nutrient medium that supplies the seedlings with water. For a detailed documentation of plant growth, the system takes a picture every hour for a period of ten days in a computer-controlled manner without a person having to look into the box. Algorithms developed by da-cons GmbH are used to determine from the photos the lengths of the shoot, the first leaf, and the root. In addition, the computer transmits the photos automatically to a server, where they can be look at by the researchers.

    A video illustrates the RiSeGrAn system: http://da-cons.de/uploads/images/videos/RiSeGrAn__description.mp4

    "By means of the system, we can discover unknown properties of known genes. For example, we can precisely measure parameters, such as the time of germination or growth of certain tissues," Riemann explains. "Our measurements can support molecular biology studies by identifying the genes that make plants more resistant to certain stress factors, e.g. saline soils."

    OpenData Platform

    In the next step, the developers of the RiSeGrAn project plan to establish an online OpenData platform based on the data collected. Scientists can then publish their data on this platform. OpenData means that raw data obtained from experiments are to be made available to other scientists. Researchers are enabled to check initial results or to study the data for certain characteristics. "Based on the data of the RiSeGrAn system, we can now test how to transfer them to the OpenData platform in the best way. In addition, we can estimate the required computer capacity and study various ways of presenting the results," Dr. Michael Kreim, Development Director of da-cons GmbH, says. "In general, technical background processes and the user interface can be developed better with realistic data than with test data." da-cons uses the data sets of the RiSeGrAn project to determine requirements to be met by the platform and to test the latter.

    Story Source:

    Materials provided by Karlsruhe Institute of Technology. Note: Content may be edited for style and length.

  • 原文来源:https://www.sciencedaily.com/releases/2016/12/161208090110.htm
相关报告
  • 《研究阐述乙烯在植物温度胁迫响应中的作用》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-05-11
    • 近日,中国农业科学院茶叶研究所茶树遗传育种创新团队系统总结了乙烯在植物温度胁迫响应中的作用及其调控机制。相关成果以综述形式在线发表于《植物科学趋势(Trends in Plant Science)》。 乙烯是一种气态植物激素,在植物的生长发育和逆境胁迫响应中发挥着重要作用。研究系统总结了目前乙烯合成和信号转导途径研究的最新进展,剖析了高温和低温等不同程度的温度胁迫对乙烯合成的影响,阐述了乙烯信号在植物响应温度胁迫中的作用及其调控机制,并阐释了乙烯和其他植物激素在植物温度胁迫响应中的交叉影响,提出了耐温度胁迫作物育种策略,研究对进一步改良茶树等植物的抗逆性提供了新思路。 该研究得到国家自然科学基金、国家重点研发计划、中国农业科学院农业科技创新工程等项目的资助。(通讯员:张璐君) 原文链接: https://www.cell.com/trends/plantscience/fulltext/S1360-1385(23)00081-X
  • 《分子植物卓越中心等揭示植物平衡生长和盐胁迫响应的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-04-05
    • 4月3日,Nature Plants在线发表了中国科学院分子植物科学卓越创新中心研究员赵春钊团队题为FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB的研究论文。该研究揭示了类受体激酶FERONIA(FER)通过光敏色素phyB介导的光信号通路来调控植物生长和盐胁迫响应之间的平衡。   土壤盐碱化是威胁作物生长和产量、阻碍现代农业可持续性发展的世界性难题。因此,利用科学手段提高作物的耐盐性,对保障全球粮食安全至关重要。近年来,赵春钊团队一直致力于研究植物响应盐胁迫的分子遗传调控网络,为培育耐盐作物提供理论支持。该团队此前研究发现,细胞壁蛋白LRX3/4/5和类受体激酶FER组成一个分子模块来调控植物生长和耐盐性,但是该模块协调植物生长和耐盐性的分子机制还不清楚。   通过筛选突变体的抑制子,研究发现phyB基因突变能够抑制lrx345和fer-4突变体植株小和对盐胁迫敏感的表型。生化实验显示FER和phyB的N端结构域互作,并且磷酸化phyB的第106位和第227位丝氨酸。FER介导的磷酸化促进了暗环境下phyB光小体在细胞核中的暗逆转,并且抑制phyB在细胞核中的蛋白积累。盐胁迫通过抑制FER的激酶活性来影响phyB的磷酸化,进而导致phyB在细胞核中的暗逆转变慢以及在细胞核中的蛋白积累增加,而phyB在细胞核积累会抑制植物生长和促进胁迫响应。在fer-4突变体中,由于过多的phyB在核中积累,导致生长和胁迫响应的平衡受到破坏,从而造成fer-4突变体在盐胁迫下出现死亡表型。在水稻中,OsphyB突变显著提高水稻在盐胁迫下的存活率,进一步表明降低phyB在细胞核中的积累将改善植物在盐胁迫下的存活。   该研究鉴定到了磷酸化光敏色素phyB的重要激酶FER,揭示了phyB磷酸化在植物响应非生物胁迫中的重要生物学意义,以及解析了一个通过FER-phyB-PIFs模块协调植物生长和耐盐性的新机制。该研究成果为培育耐盐稳产作物新品种提供了重要的遗传改良位点和思路,具有潜在应用价值。   相关研究工作得到国家自然科学基金面上项目、中国科学院战略性先导科技专项等项目的资助。