《突破 | 量子通信新突破:纳米级圆偏振单光子流发射器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-10-11
  • 一项来自美国洛斯阿拉莫斯国家实验室的新研究表明,利用二维材料堆叠的创新纳米级器件,可以在不需要外加磁场的情况下产生和控制圆偏振的单光子流。这一技术的突破有望推动量子通信领域的进一步发展。相关研究成果已发表于Nature Materials。

    开创性的实验

    迄今为止,要产生圆偏振单光子流通常需要将量子发射器与复杂的纳米级光子或电子器件相耦合,或者需要在发射器周围应用大型超导磁体产生高磁场。这使得实现这一目标变得非常复杂和昂贵。

    然而,在这项新的研究中,由物理学家Han Htoon领导的团队采用了一种全新的方法。他们将单分子厚的半导体材料二硒化钨(WSe2)层叠加在磁性晶体三硫化镍磷(NiPS3)的薄层之上。然后,研究人员在这一异质结构堆叠上制造了仅有400纳米宽度的压痕。

    实验成果

    这一方法的核心是通过压痕在材料中产生势能的凹陷,将电子空穴对(激子)限制在WSe2层内。这些激子能够在激光激发下发射单光子流。此外,压痕还会破坏底层NiPS3的磁性,产生一个指向异质结构之外的局部磁矩。这种磁矩和激子的“邻近效应”结合起来,创造了圆偏振光子流。

    此实验的难点在于要在NiPS3这种反铁磁半导体中创造圆偏振光子流并不容易。这是因为NiPS3中的镍离子的自旋通常相互抵消,导致磁矩几乎为零。为了克服这一问题,研究员人员使用原子力显微镜的尖端在堆叠层中制备精密的纳米级的压痕,从而得到了最高效的圆偏振单光子流。

    潜在应用

    这一突破具有重大潜力,因为信息可以在光子的偏振状态中进行编码。因此,这一技术可能应用于量子通信,包括量子密码学和量子计算。此外,研究人员还计划寻找最佳方法,通过光学、电学或微波手段来调制单光子流的圆偏振度,为量子通信领域的未来发展打开了崭新的可能性。

相关报告
  • 《突破 | 亚纳米级光学技术获得重要突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-24
    • 想象一下,将光缩小到一个微小的水分子大小,打开一个量子可能性的世界。这是光科学和技术领域长久以来的梦想。最近的进展使我们离实现这一令人难以置信的壮举更近了一步,因为浙江大学的研究人员在将光限制在亚纳米尺度上取得了突破性进展。 传统上,有两种方法来局部化超出其典型衍射极限的光:介电约束和等离子体约束。然而,诸如精密制造和光损耗等挑战阻碍了将光场限制在亚10纳米(nm)甚至1纳米水平。但是现在,《先进光子学》杂志报道了一种新的波导方案,有望释放亚纳米光场的潜力。 想象一下:光从一根普通的光纤出发,通过一根光纤锥开始一段变革性的旅程,最终到达一个耦合纳米线对(CNP)。在CNP中,光变形成一个非凡的纳米狭缝模式,产生一个受限的光场,可以小到仅仅是纳米的几分之一(大约0.3纳米)。这种新颖的方法具有高达95%的惊人效率和很高的峰值与背景比,提供了一个全新的可能性世界。 新的波导方案将其范围扩展到中红外光谱范围,进一步推动了纳米宇宙的边界。光学约束现在可以达到大约0.2nm (λ/20000)的惊人规模,为探索和发现提供了更多的机会。 浙江大学纳米光子学组的童利民教授指出:“与以前的方法不同,波导方案以线性光学系统的形式呈现,带来了许多优点。它可以实现宽带和超快脉冲操作,并允许多个亚纳米光场的组合。在单一输出中设计空间,光谱和时间序列的能力开辟了无限的可能性。” 这些突破的潜在应用是令人敬畏的。光场定位到可以与单个分子或原子相互作用,有望在光-物质相互作用、超分辨率纳米显微镜、原子/分子操作和超灵敏检测方面取得进展。我们站在一个新发现时代的悬崖上,在那里,最小的存在领域都在我们的掌握之中。 光被极大地限制在耦合的纳米线对中的纳米狭缝中 在纳米狭缝模式下产生亚纳米受限光场的波导方案。(a) CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布图
  • 《突破光子玻色子本性,开拓量子科学新方向》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-04-01
    • 以量子计算,量子通讯等为应用前景的量子科学和技术将对人类的生产和生活产生革命性的影响。比如,量子计算机相比于经典计算机可以实现指数级别的运算加速,量子通讯可以提供绝对的通讯保密性。因为光的多种优良物理属性,使用光子作为信息载体的光量子科学是实现量子技术最有前景的系统之一。 近日,香港大学校长张翔院士团队在量子光学中引入一个新的自由度,从而首次实现了对光子之间量子相互作用的任意操控,为量子科学和技术的发展提供了一个崭新的思路。相关研究成果于3月30日刊发于《自然—光子学》杂志。 虽然单个光子的量子态很容易被调控,但是如何有效控制光子之间的相互作用却是量子光学研究的核心之一,也是实现量子技术的最大困难之一。这是因为,在物理学中,光子是玻色子,是基本粒子的两个不同类别之一。玻色子的量子本性倾向于占据相同的空间和时间,聚集在一起,所以对于原本没有直接相互作用的光子而言,它们之间只能通过量子干涉达到间接的等效相互吸引力。相反,费米子是另一种粒子,比如电子,它们的量子本性则倾向于彼此分离,通过量子干涉只能产生等效的相互排斥力。如果能够有效控制光子之间的量子相互作用,实现从相互吸引到相互排斥,从而突破光子的玻色子本性,就可能有效地解决光量子技术应用的巨大困难。 张翔团队研发了新型的纳米超材料,巧妙地在量子光学中引入一个新的自由度,从而实现了对两个单光子之间量子相互作用的任意控制,为量子光学和器件开拓了新的方向。在以前的量子干涉研究中,科学家往往只关注光子的量子本性,而忽略了核心器件的属性。张翔团队创造性地提出了一个新的概念,即核心器件的属性和光子的量子本性在某些场合是不可区分的,从而可以等效的相互转化。也就是说原理上可以通过人工设计量子器件的属性作为新的自由度来等效地改变光子的量子本性。 延着这个思路,张翔团队将纳米超材料的空间旋转自由度设计为光子量子相互作用的新自由度,通过旋转纳米超材料或者改变单光子的偏振,实验上首次实现了连续和动态地控制双光子的量子干涉,从而等效地实现了对光子量子本性和光子之间量子相互作用的任意操控。这使得光子可以表现得有时像玻色子, 有时又像费米子,或者介于两者之间的任意状态,从而超越了光子固有的玻色子本性。这种新颖的思路为实现光量子技术提供了新的前景。 在应用层面,这种新型纳米超材料对光量子过程的控制功能,超越了现有的光学器件或系统。 这种新的控制方式,好比是给两个单光子之间的量子相互作用制做了一个连续可调器。只要在量子网络中加入少数这样或类似的可调器,就可以极大的增强量子网络的功能。与此同时,纳米超材料设计也将为研发高效的光量子逻辑门和其他量子器件和系统提供新的解决方案。 新型纳米超材料实现对光子之间量子相互作用的任意控制。图中(A,D)表示两个单光子表现为玻色子相互吸引的情形;(B,E)表示两个单光子表现恰好介于玻色子和费米子中间的情形; (C,F)表示两个单光子表现为费米子相互排斥的情形。图(G)展示了纳米超材料所引入的新自由度对单光子的表现从玻色子到费米子的连续可调的任意操控。