《单细胞测序技术的研究新进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-01-03
  • 单细胞测序技术通过在单个实验中快速分析数千个甚至数百万个细胞,能够发现许多疾病的病因,细胞间如何相互作用,以及哪些分子参与其中。11月21日,STAT网站发表的一篇文章介绍了单细胞测序的新进展。

    寻找新的药物靶点

    尽管人们可通过显微镜或组织活检来确定组织是否癌变,但很难分离出哪些细胞是良性的,哪些可能逃避治疗,继续突变并引发转移。大部分的临床测序工作都遵循平均法则,对整个细胞群体进行遗传分析。因此,这些细胞之间的微妙差异并不清楚,也很难分离出恶性程度最高的细胞。不过,正是这些微妙的差异,才造成每种癌症的独特病理。

    单细胞测序的工作原理是:将癌症活检样本中的单个细胞分离,锁定在微流体芯片的迷你检测管中,然后通过一系列的酶和化学试剂处理从而释放遗传物质。此时,细胞被标上独特的“条形码”。之后,研究人员可以检测细胞是否携带特定突变,或表达与疾病相关的特定分子。Celsius Therapeutics公司正在利用单细胞测序来寻找新的药物靶点。Mission Bio公司正与MD安德森癌症中心、美国国家癌症研究所和斯坦福大学癌症研究中心等机构合作,通过患者组织样本寻找残留的癌症。单细胞测序有望帮助临床医生了解某种疗法是否针对特定的细胞类型。

    发现新的人体细胞

    “人类细胞图谱计划”(Human Cell Atlas)是一项为创建人体每种细胞类型的详细分类而发起的国际行动。它的部分资金来自“扎克伯格-陈计划”(Chan Zuckerberg Initiative)。随着一些成果的陆续发布,研究人员已经获得了一些新的研究进展。

    美国艾伦脑科学研究所科学家Ed Lein正致力于揭开人类大脑的细胞组成。他表示,这个想法是对大脑皮层进行逆向工程,试图了解其中所有类型的细胞,然后了解它们如何连接在一起。单细胞测序技术的优势在于能够测定每个细胞中5000到10000个基因,并对数千个细胞同时开展分析。这项工作也取得了丰硕的成果。2018年8月,Lein团队宣布通过单细胞RNA测序发现了一种“玫瑰果神经元(rosehip neurons)”,这些细胞的轴突束就像吐露花瓣的玫瑰花。现有的结论表明,这些细胞似乎只存在于人体中,可能以一种非常特殊的方式控制信息流。

    推动药物发现

    Celsius Therapeutics公司正利用单细胞测序来推动整个药物发现的过程。这家公司在2018年的首轮风险融资中获得6500万美元,其研究对象是癌症和自身免疫性疾病。该公司正在分析癌症等疾病中的单细胞RNA,以寻找药物靶点。事实上,单细胞测序为药物开发开辟了一条全新的道路。

相关报告
  • 《我国学者在细胞力学可视化技术研究方面取得进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     在国家自然科学基金项目(批准号:32150016)等资助下,武汉大学刘郑教授团队在细胞力学可视化技术发展方面取得新进展。研究成果以“基于水凝胶的分子张力荧光显微镜用于研究受体介导的刚性感应(Hydrogel-based Molecular Tension Fluorescence Microscopy for Investigating Receptor-mediated Rigidity Sensing)”为题,于2023年10月5日在线发表在《自然?方法学》(Nature Methods)杂志上,论文链接:https://doi.org/10.1038/s41592-023-02037-0。   细胞在其周围环境中是高度动态的,它们收到不断地挤压、弯曲和拉扯,与环境中的其他组件发生紧密的机械交互。这些交互产生的机械力虽然微小,仅在pN级别,但由专门的受体和分子所感知并传递。更为关键的是,细胞依赖这些机械互动来形成“感知”并调整自身以适应外部环境(细胞外基质,ECM)的“软-硬”特性,此能力即为细胞的“刚度感知”。这种“刚度感知”能够深入地影响细胞生命的多个层面,包括调节干细胞的分化、细胞分裂、癌症的转移、T细胞的激活和血液的凝固等。目前细胞“刚度感知”背后的分子机制极为复杂,并没有得到很好的理解。为了在分子水平上深入理解这一过程,首先需要测量这些细微的机械力。但是,考虑到这种机械交互常常在极小的空间范围(从亚微米到分子)内进行,伴随着pN级别的机械力,使用常规的生物物理手段来探测细胞膜蛋白受体在“刚度感知”过程中所传递的pN级别机械力便显得尤为困难。该团队结合了多学科交叉领域技术,如基于DNA纳米技术的自主设计的分子荧光张力探针、与人体组织刚度相似的软水凝胶界面的化学改性技术,以及先进的单分子荧光成像技术等。利用这些技术,他们研发了一套实验方法,能够同时成像细胞机械力的多个维度,例如细胞对细胞外基质(ECM)“软-硬”识别中的分子力图谱、分子力的动态频率、细胞的整体牵引力以及力的方向。研究发现,成纤维细胞对于底物刚性的响应方式并不是简单地增加现有的整合素-配体键的数量,而是通过募集更多能承受力的整合素,并调整ECM中整合素的采样频率,从而更有效地促进局部粘附的成熟。此外,研究还揭示了ECM刚性能够正向调节T细胞受体与其配体间的pN级别的力量以及T细胞受体的机械采样频率,进而促进T细胞的激活。这一系列工作为细胞“刚性感知”中分子力的可视化提供了强有力的工具,使得在常规的共聚焦显微镜下,能够简洁而有效地揭示和探索与ECM刚度相关的细胞活动过程中的精细分子力信息。
  • 《Science | 人脑中单细胞染色质可及性的比较图谱》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-14
    • 2023年10月13日,加利福尼亚大学等机构的研究人员在Science 上发表了题为A comparative atlas of single-cell chromatin accessibility in the human brain的文章。 单细胞转录组学的最新进展揭示了人类大脑中不同的神经元和胶质细胞类型。然而,调控细胞身份和功能的调控程序仍不清楚。该研究利用测序技术(snATAC-seq)对转座酶可接近的染色质进行了单核分析,研究了来自3名成年人的42个大脑区域的110万个细胞的开放染色质景观。 整合这些数据揭示了107种不同的细胞类型及其对人类基因组中544,735个候选顺式调控DNA元件(cCREs)的特异性利用。近三分之一的cCREs在小鼠脑细胞中表现出保守性和染色质可及性。该研究揭示了特定脑细胞类型与神经精神疾病(包括精神分裂症、双相情感障碍、阿尔茨海默病(AD)和重度抑郁症)之间的密切联系,并开发了深度学习模型来预测非编码风险变异在这些疾病中的调节作用。 本文内容转载自“ CNS推送BioMed”微信公众号。 原文链接: https://mp.weixin.qq.com/s/IwI13twn10xlGUJsNbQekg