《单细胞测序技术的研究新进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-01-03
  • 单细胞测序技术通过在单个实验中快速分析数千个甚至数百万个细胞,能够发现许多疾病的病因,细胞间如何相互作用,以及哪些分子参与其中。11月21日,STAT网站发表的一篇文章介绍了单细胞测序的新进展。

    寻找新的药物靶点

    尽管人们可通过显微镜或组织活检来确定组织是否癌变,但很难分离出哪些细胞是良性的,哪些可能逃避治疗,继续突变并引发转移。大部分的临床测序工作都遵循平均法则,对整个细胞群体进行遗传分析。因此,这些细胞之间的微妙差异并不清楚,也很难分离出恶性程度最高的细胞。不过,正是这些微妙的差异,才造成每种癌症的独特病理。

    单细胞测序的工作原理是:将癌症活检样本中的单个细胞分离,锁定在微流体芯片的迷你检测管中,然后通过一系列的酶和化学试剂处理从而释放遗传物质。此时,细胞被标上独特的“条形码”。之后,研究人员可以检测细胞是否携带特定突变,或表达与疾病相关的特定分子。Celsius Therapeutics公司正在利用单细胞测序来寻找新的药物靶点。Mission Bio公司正与MD安德森癌症中心、美国国家癌症研究所和斯坦福大学癌症研究中心等机构合作,通过患者组织样本寻找残留的癌症。单细胞测序有望帮助临床医生了解某种疗法是否针对特定的细胞类型。

    发现新的人体细胞

    “人类细胞图谱计划”(Human Cell Atlas)是一项为创建人体每种细胞类型的详细分类而发起的国际行动。它的部分资金来自“扎克伯格-陈计划”(Chan Zuckerberg Initiative)。随着一些成果的陆续发布,研究人员已经获得了一些新的研究进展。

    美国艾伦脑科学研究所科学家Ed Lein正致力于揭开人类大脑的细胞组成。他表示,这个想法是对大脑皮层进行逆向工程,试图了解其中所有类型的细胞,然后了解它们如何连接在一起。单细胞测序技术的优势在于能够测定每个细胞中5000到10000个基因,并对数千个细胞同时开展分析。这项工作也取得了丰硕的成果。2018年8月,Lein团队宣布通过单细胞RNA测序发现了一种“玫瑰果神经元(rosehip neurons)”,这些细胞的轴突束就像吐露花瓣的玫瑰花。现有的结论表明,这些细胞似乎只存在于人体中,可能以一种非常特殊的方式控制信息流。

    推动药物发现

    Celsius Therapeutics公司正利用单细胞测序来推动整个药物发现的过程。这家公司在2018年的首轮风险融资中获得6500万美元,其研究对象是癌症和自身免疫性疾病。该公司正在分析癌症等疾病中的单细胞RNA,以寻找药物靶点。事实上,单细胞测序为药物开发开辟了一条全新的道路。

相关报告
  • 《我国学者在细胞力学可视化技术研究方面取得进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     在国家自然科学基金项目(批准号:32150016)等资助下,武汉大学刘郑教授团队在细胞力学可视化技术发展方面取得新进展。研究成果以“基于水凝胶的分子张力荧光显微镜用于研究受体介导的刚性感应(Hydrogel-based Molecular Tension Fluorescence Microscopy for Investigating Receptor-mediated Rigidity Sensing)”为题,于2023年10月5日在线发表在《自然?方法学》(Nature Methods)杂志上,论文链接:https://doi.org/10.1038/s41592-023-02037-0。   细胞在其周围环境中是高度动态的,它们收到不断地挤压、弯曲和拉扯,与环境中的其他组件发生紧密的机械交互。这些交互产生的机械力虽然微小,仅在pN级别,但由专门的受体和分子所感知并传递。更为关键的是,细胞依赖这些机械互动来形成“感知”并调整自身以适应外部环境(细胞外基质,ECM)的“软-硬”特性,此能力即为细胞的“刚度感知”。这种“刚度感知”能够深入地影响细胞生命的多个层面,包括调节干细胞的分化、细胞分裂、癌症的转移、T细胞的激活和血液的凝固等。目前细胞“刚度感知”背后的分子机制极为复杂,并没有得到很好的理解。为了在分子水平上深入理解这一过程,首先需要测量这些细微的机械力。但是,考虑到这种机械交互常常在极小的空间范围(从亚微米到分子)内进行,伴随着pN级别的机械力,使用常规的生物物理手段来探测细胞膜蛋白受体在“刚度感知”过程中所传递的pN级别机械力便显得尤为困难。该团队结合了多学科交叉领域技术,如基于DNA纳米技术的自主设计的分子荧光张力探针、与人体组织刚度相似的软水凝胶界面的化学改性技术,以及先进的单分子荧光成像技术等。利用这些技术,他们研发了一套实验方法,能够同时成像细胞机械力的多个维度,例如细胞对细胞外基质(ECM)“软-硬”识别中的分子力图谱、分子力的动态频率、细胞的整体牵引力以及力的方向。研究发现,成纤维细胞对于底物刚性的响应方式并不是简单地增加现有的整合素-配体键的数量,而是通过募集更多能承受力的整合素,并调整ECM中整合素的采样频率,从而更有效地促进局部粘附的成熟。此外,研究还揭示了ECM刚性能够正向调节T细胞受体与其配体间的pN级别的力量以及T细胞受体的机械采样频率,进而促进T细胞的激活。这一系列工作为细胞“刚性感知”中分子力的可视化提供了强有力的工具,使得在常规的共聚焦显微镜下,能够简洁而有效地揭示和探索与ECM刚度相关的细胞活动过程中的精细分子力信息。
  • 《Cell子刊首个单细胞测序研究揭示其可塑性》

    • 来源专题:微藻光驱固碳合成生物燃料产品的关键技术研究
    • 编译者:王阳
    • 发布时间:2021-01-08
    • 随着时代的发展,高脂饮食及其造成的肥胖已经逐渐成为危害健康的一大杀手。肥胖不仅会引起多种代谢性疾病(如2型糖尿病),也是心血管疾病、癌症等多种疾病的重要易感因素。事实上,我们关注最多的还是脂肪细胞在其中的变化和作用,这也是进一步研究肥胖的基础。 2020年12月29日,《细胞—代谢》杂志在线发表了南丹麦大学研究人员题为“Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution”的合作研究。这项研究首次应用单细胞测序技术揭示了在饮食诱导的肥胖中附睾脂肪组织的可塑性。 DOI: 10.1016/j.cmet.2020.12.004 研究人员使用高脂饮食(HFD)诱导小鼠肥胖,随后利用单细胞测序技术解析了其附睾白色脂肪组织(eWAT)包含的主要细胞类型。他们将巨噬细胞亚群分为血管周样巨噬细胞(PVM)、非血管周样巨噬细胞(NPVM)、脂相关巨噬细胞(LAM)和增值性脂相关巨噬细胞(LAM)。结果显示,巨噬细胞是eWAT中的主要免疫细胞,HFD诱导的肥胖导致LAM和p-LAM增加,而PVM和NPVM减少。 肥胖时eWAT中免疫细胞的组成 与此同时,研究人员还发现,肥胖引发间皮和内皮细胞群细胞因子水平增加,提示HFD诱导的肥胖导致了间皮和内皮亚群的炎症状态。并且,在eWAT中存在4种纤维成脂肪祖细胞,而高脂诱导的肥胖导致前脂肪细胞比例显著增加。也就是说,HFD诱导了纤维成脂肪祖细胞向前脂肪细胞表型转化。 肥胖时纤维成脂肪祖细胞向前脂肪细胞表型转化 总而言之,研究人员认为肥胖时脂肪源性脂肪细胞(LGA)亚群的消失是脂肪细胞可塑性的结果,而不是凋亡或坏死造成的。同时,肥胖已被证明可诱导参与WAT巨噬细胞增殖,但其巨噬细胞特异性基因下调而脂质处理基因急剧增加。研究提供的这些数据为将来的脂肪细胞分化和脂肪组织可塑性研究奠定了基础。