《南亚科10nm DRAM技术突破》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-01-15
  • 据台媒报道,南亚科总经理李培瑛于10日宣布,已完成自主研发10纳米级DRAM技术,将在今年下半年试产!

    全球DRAM内存芯片主要掌握在三星、SK海力士、美光三家公司中,他们的份额高达95%以上,关键原因就在于这三家的技术专利形成了极高的门槛,其他公司突围起来很难。

    南亚科之前的内存也是来自美光授权,今年他们将转向自研的10nm级内存,未来将自产DDR4/LPDDR4/DDR5等内存颗粒。

    在美光前两年全资收购华亚科之后,南亚科技变成了全球第四大内存厂,不过份额只有2%左右,而且技术来源也主要是美光授权,而且技术落后较多,在三星、美光、SK海力士转向1X、1Y、1Znm工艺之后,南亚的主力还是30nm等,来自美光授权,这两年才搞定20nm内存,也是授权+合作研发的模式,南亚上次自己搞内存研发还是99nm时代。

    在10nm级内存芯片中,南亚决定自研了,目前10nm级前导产品预计会在今年下半年试产,主要包括8Gb核心的DDR4、LPDDR4及未来的DDR5,都可以由自研的技术平台生产。

    在解决10nm级内存工艺技术之后,南亚还会继续研发第二代10nm级工艺,预计2022年量产,还会开发第三代10nm级工艺。

相关报告
  • 《突破 | 亚纳米级光学技术获得重要突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-24
    • 想象一下,将光缩小到一个微小的水分子大小,打开一个量子可能性的世界。这是光科学和技术领域长久以来的梦想。最近的进展使我们离实现这一令人难以置信的壮举更近了一步,因为浙江大学的研究人员在将光限制在亚纳米尺度上取得了突破性进展。 传统上,有两种方法来局部化超出其典型衍射极限的光:介电约束和等离子体约束。然而,诸如精密制造和光损耗等挑战阻碍了将光场限制在亚10纳米(nm)甚至1纳米水平。但是现在,《先进光子学》杂志报道了一种新的波导方案,有望释放亚纳米光场的潜力。 想象一下:光从一根普通的光纤出发,通过一根光纤锥开始一段变革性的旅程,最终到达一个耦合纳米线对(CNP)。在CNP中,光变形成一个非凡的纳米狭缝模式,产生一个受限的光场,可以小到仅仅是纳米的几分之一(大约0.3纳米)。这种新颖的方法具有高达95%的惊人效率和很高的峰值与背景比,提供了一个全新的可能性世界。 新的波导方案将其范围扩展到中红外光谱范围,进一步推动了纳米宇宙的边界。光学约束现在可以达到大约0.2nm (λ/20000)的惊人规模,为探索和发现提供了更多的机会。 浙江大学纳米光子学组的童利民教授指出:“与以前的方法不同,波导方案以线性光学系统的形式呈现,带来了许多优点。它可以实现宽带和超快脉冲操作,并允许多个亚纳米光场的组合。在单一输出中设计空间,光谱和时间序列的能力开辟了无限的可能性。” 这些突破的潜在应用是令人敬畏的。光场定位到可以与单个分子或原子相互作用,有望在光-物质相互作用、超分辨率纳米显微镜、原子/分子操作和超灵敏检测方面取得进展。我们站在一个新发现时代的悬崖上,在那里,最小的存在领域都在我们的掌握之中。 光被极大地限制在耦合的纳米线对中的纳米狭缝中 在纳米狭缝模式下产生亚纳米受限光场的波导方案。(a) CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布图
  • 《硅藻—太阳能电池技术突破的新途径》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-01
    • 硅藻,一种繁衍十分迅速的硅藻类植物,它们的无定型二氧化硅壳体以及独特的立体结构,可以使光在细胞内进行充分的光合作用。在人类发明硅基太阳能电池之前,自然界中的硅藻早已开始利用二氧化硅来收集太阳能。近年来,众多国内外研究人员就希望利用硅藻的光学特性来推动太阳能技术取得突破。 硅藻特殊结构发挥重要作用 藻类有200个门,10万多个种,大多数生活在海水中,能利用太阳能进行光合作用。藻类是世界上光能利用最成功、光能利用率最高的有机体,其能较少的反射太阳光,并通过网格毛孔捕获太阳能。 藻类高效利用阳光的最大秘密在于其外壳,其中单细胞的硅藻外壳是最佳模型。硅藻外壳是由结构极为复杂精密的二氧化硅组成10~50nm 的六边形微孔排列形成丝网状结构,复杂的结构能使射进的光线无法逃逸,这种纹饰繁密的藻壳不仅增强了硅藻的硬度和强度,使其具有能悬浮起来的机械性,而且提高了其运输营养物质和吸附、附着的生理功能,且阻止了有害物质进入,增强了光吸收率。 研究人员在很多具有分级多孔结构的生物材料中发现了天然的光子晶体效应,硅藻的特殊结构让它成为一种良好的光子晶体,能够大大提升光捕获效率,这种特性让硅藻在太阳能电池中发挥了重要的作用。 硅藻天然材料降低所需成本 硅藻这种微小生物对有机太阳能电池(相较于传统太阳能技术,这种技术成本更低)的设计有着独特的价值。因为设计这些电池的一个挑战是,它们需要非常薄的活性层(只有100到300纳米),而这限制了它们将光能转化为电能的效率。 解决这个问题的方案便是嵌入能够吸收与分散光的纳米结构来提高吸收水平,但这对于大规模生产来说太贵了。而这恰恰就是硅藻能够起作用的地方。经过数十亿年的适应性进化,它们已经尽可能优化了吸收光的能力。而且它们是自然界中最常见的浮游植物,这就意味着它们很便宜。硅藻在世界各地的海洋和淡水中非常普遍,因而成本非常低,所以它们成为改善光伏发电的理想选择。 硅藻有效提高能量转换效率 藻类外壳利用阳光的构筑是未来太阳能电池原材料和模型构筑的最佳供体。有机光伏太阳能电池具有由有机聚合物制成的活性层,这意味着它们比常规太阳能电池便宜,但它们的转换效率不太高,主要因为其有源层非常薄,通常需要小于300纳米,因此这限制了转换效率。 而利用硅藻的光学特性,将硅藻加入到染料敏化太阳能电池(是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能)的二氧化钛薄层后,能量转换效率是原转换效率的1.3-1.4倍(而把硅藻壳体加入到二氧化钛中烧结形成电池阳极,增加了光捕获和在电池中的散射性能,传统二氧化钛覆膜3遍的转换效率为3.8%,加入了硅藻壳体的二氧化钛转换效率可以达到5.26%)。 硅藻对于人类来说就是一个未开发的宝藏,除了在太阳能光伏材料上能有效的突破目前的能量转换效率,而且在其他领域还有着相同重要的应用。例如硅藻细胞代谢产生的多糖、蛋白质、色素、油脂等,使其在食品、医药、基因工程、液体燃料等多个领域都有极大的开发前景。 通过硅藻壳生产的微纳米二氧化硅是自然界独一无二、纯度极高的生物无机材料,也是最佳微纳生物平台材料,当然硅藻在养殖过程中也能吸收二氧化碳释放大量氧气,对环境有着巨大的贡献。