《新冠病毒突变基本饱和?专家这样解读》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-30
  •  近日,有流行病学专家发表言论认为,新冠病毒的突变基本上已饱和了。新冠病毒当真已经“变无可变”了吗?

      在此前的学术会议上,多位专家也曾讨论过新冠病毒变异将往何处去的问题。

      复旦大学附属华山医院感染科主任张文宏强调机体免疫力对病毒突变的压力。他表示,病毒一直都有突变的“冲动”,但人类的主动免疫或感染及重复感染产生的免疫力会制约新冠病毒变异的方向。

      中国科学院院士高福从整个自然界的广阔范围内看待病毒的变异,他表示,新冠病毒的宿主范围非常广,从老虎、狮子到老鼠、兔子,而且仍在进一步扩大,不能忽视新冠病毒可能带来更大的挑战。

      无论是人类免疫对病毒变异方向的制约还是在物种间“反复横跳”的可能性,两位专家的观点均表明,对新冠病毒进行变异预测要考虑的因素非常多。

      那么,新冠病毒突变会发生“饱和”吗?科技日报记者连线采访了病毒学专家。

      平均每年变异24个位点

      “新冠病毒的变异速度为平均每年变异24个位点。”病毒学专家、北京化工大学生命科学与技术学院院长童贻刚告诉记者,这意味着3年过去了,现有新冠病毒的序列与原始株序列比较,突变碱基数量的平均值将在70—80个左右。

      为什么新冠病毒会以相对稳定的速度发生变异呢?

      “新冠病毒有纠错机制,在病毒复制的时候难免会发生错配(不遵循A-U、C-G的原则),比如流感病毒、艾滋病病毒缺乏纠错机制,错配后变异就发生了。”童贻刚说,而新冠病毒不同,在错配后会有自带的纠错机制将部分错配碱基改正过来。

      由于有纠错机制,新冠病毒就好比一个现代化工厂,有在线质控系统,复制时的出错概率是相对较小的。

      “新冠病毒的基因组全长有3万多个碱基,即便只关注S蛋白RBD区也有几百个碱基,从数学概念上讲,新冠病毒变异还远没达到饱和。”童贻刚说。

      此外,作为RNA病毒,新冠病毒存在不同的变异方式,包括渐进式变异(碱基突变)、跳跃性变异(基因重组,例如XBB就是BA.2.10.1和BA.2.75亚系的重组体)。这些也使病毒变异难以达到“饱和”。

      当前病毒突变重点是免疫逃逸,未来会耐药吗

      对于新冠病毒突变的研究目前大多集中在S蛋白的RBD区域的数百个碱基。其他区域2万多个碱基的变化对病毒产生什么样的影响,目前并没有深入研究。

      当前,疫苗的接种助力全人群建立起免疫屏障,使得新冠病毒因为要应对人类宿主的免疫压力,不断变化S蛋白的RBD区,实现免疫逃逸。

      在未来与病毒的较量中,人类仍需要通过科研创新创造更严苛的环境磨掉新冠病毒的“利爪”。童贻刚说,例如为了预防新冠病毒未来在耐药性、环境抵抗力等方面发生其他位点的变异,药物研发应该有更广阔的视角,应鼓励多种作用机理的新冠药物的开发,以避免药物靶点单一带来的病毒耐药性的产生。

      “人类对于新冠病毒的研究还不能说足够透彻。”童贻刚打了个形象的比方,人的百米跑时间极限是10秒内,猎豹的是3秒多,仍需要更多的科学研究将新冠病毒的致病潜力限制住。

      人群免疫对新冠病毒进化产生巨大压力

      张文宏曾坦言,“虽说病毒的变异是没有方向的,但病毒的进化是有规律和方向的。当前病毒的低毒性使得病毒的传播让我们无法追踪和第一时间预警,这有利于它的进化。”

      当前传播更快、临床症状更隐秘的奥密克戎在新冠病毒中具有生存的优势。基于此,张文宏认为,从奥密克戎毒株家族跳跃出来再诞生一个传播更快的毒株现在已经很困难了。

      “随着国际上不断使用针对奥密克戎变异株的疫苗,病毒需隐匿传播,因此,毒力越弱的毒株,其传播的速度就会更快。”张文宏说。

      三年来,新冠病毒的演化轨迹无不带有与宿主免疫相互作用痕迹。人群中高比例的疫苗接种以及再感染带来的机体免疫力,将始终引导新冠病毒的进化方向,多名专家认为,它最终会变得像人类普通冠状病毒HCoV-OC43一样,不再产生严重症状。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2022-12/30/content_546815.htm?div=-1
相关报告
  • 《俄专家:新冠病毒突变情况支持病毒为自然起源》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-08-05
    • 俄罗斯科研人员日前报告说,他们分析了新冠病毒的突变情况,结果支持新冠病毒是自然起源的观点。 据塔斯社日前报道,俄罗斯科学院信息传输问题研究所的亚历山大·潘钦等人在美国《同行评议科学杂志》(PeerJ)上撰文说,他们分析了不同国家对新冠病毒基因组测序所得的1000多套数据,发现了1251处碱基突变,其中许多地方的鸟嘌呤被替换为尿嘧啶。 潘钦在媒体上表示,如果蝙蝠是新冠病毒的自然界宿主,那么蝙蝠细胞和新冠病毒能“和平共处”,病毒在蝙蝠体内突变较少。但新冠病毒传染给人后,人体可能发生高水平的氧化应激反应,这种反应会导致病毒基因组中一些地方的鸟嘌呤变为尿嘧啶。 潘钦说,新冠病毒与其他冠状病毒的对比显示,新冠病毒在演化早期的突变情况与自然界中其他冠状病毒相似。新冠病毒在人群中广泛传播后,随着病毒对人体环境的不断适应,以尿嘧啶替换鸟嘌呤的突变概率显着增大。潘钦认为:“这些情况表明新冠病毒是自然起源,在其演化过程中看不到任何人为干预的迹象。”
  • 《德国生物信息学家发现新冠病毒新弱点》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2021-02-01
    • 科技日报柏林1月11日电 (记者李山)近日,德国的生物信息学家通过计算机模型识别出人体中一种对新冠病毒繁殖至关重要的酶,如果抑制这种酶,病毒就会停止繁殖而不影响宿主细胞。该研究有助于找到对抗新冠病毒感染的新方法。 除了疫苗,寻找有效的治疗新冠病毒感染的药物也是战胜疫情的重要手段之一。现在,来自德国感染研究中心和蒂宾根大学的德尔格博士及其团队通过一种新颖的方法发现了新冠病毒的一个弱点,可以用来开发针对性的药物。生物信息学家使用计算机模型识别出了一种对病毒至关重要的人类酶。德尔格博士说:“如果我们关闭这种酶——鸟苷酸激酶1(GK1),病毒就会停止繁殖而不会影响宿主细胞。” 德尔格领导的研究团队从2020年1月就开始进行有关新冠病毒的研究,他同时还是蒂宾根大学的青年教授,负责基于计算机的系统生物学研究,重点是优化生物技术过程和分子水平上疾病的发展和进程。他们成功开发出带有新冠病毒和人类肺泡巨噬细胞的集成计算机模型。巨噬细胞主要负责防御肺泡中的异物,德尔格说:“(此前)关于这些巨噬细胞已经有一个复杂的计算机模型,为了研究新冠病毒我们进一步进行了开发。” 模型的起点是病毒已经渗透进入宿主(即模型中的人类肺泡巨噬细胞),并且已经对其进行重新编程。假如病毒想要产生新的病毒颗粒并传播,那么它必须使用来自宿主的材料并迫使宿主细胞产生新的病毒成分。德尔格说:“病毒在宿主中使用的生化反应已经被整合到了模型中。我们首先分析病毒的成分,然后计算出产生病毒颗粒所需的材料,并查看病毒感染期间宿主细胞中的生化反应如何发生变化。” 在所谓的流量平衡分析中,科学家们系统地测试了在受感染的细胞中与未受感染的细胞中哪些生化反应发生的情况不同。通过这些反应,他们可以开始进一步的实验。通过专门关闭选定的反应,他们追踪了对病毒特别重要的过程。例如,在鸟苷酸激酶1关闭时可完全阻止病毒繁殖。在肺泡巨噬细胞中这种酶在核糖核酸(RNA)构件的代谢中起重要作用,因此对新冠病毒RNA的构成也起着决定性作用。 德尔格解释说:“没有GK1病毒就无法复制,但是人类细胞却可以切换到其他生化代谢途径。”如果想用活性成分抑制酶而又不会对人体造成不良副作用,这是重要的先决条件。目前,德尔格团队正与弗劳恩霍夫分子生物学和应用生态学研究所的伯哈德·艾林格尔博士合作,测试抑制剂对新冠病毒的有效性。一些酶的抑制剂是已知的,位于汉堡的弗劳恩霍夫研究所有一个完整的库,包含5600多种活性物质,最关键的是所有这些物质都已被批准可以安全地用于人体。 即便如此,科学家们在实验室中找到合适的活性成分之后,还必须进行严格的试验。先在动物中,然后在人体中。因为只有这样,人们才可以完整地掌握活性成分和免疫系统之间产生的相互作用。专家们预计,如果一切顺利,这种针对新冠病毒的药物,在经过临床试验后,最早可能会在2021年年底获批。艾林格尔解释说:“也许我们不能百分百抗击这种病毒,而只会阻止90%或85%的病毒繁殖。但只要为免疫系统赢得足够的时间,结果就显而易见。此外,值得期待的还有,这种针对病毒的基本方法能够适用于新冠病毒的所有突变。”