《BioRxiv,3月7日,Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-08
  • Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites

    Shoudeng Chen, Sisi Kang, Mei Yang, Zhongsi Hong, Liping Zhang, Zhaoxia Huang, Xiaoxue Chen, Suhua He, Ziliang Zhou, Zhechong Zhou, Qiuyue Chen, Yan Yan, Changsheng Zhang, Hong Shan

    doi: https://doi.org/10.1101/2020.03.06.977876

    Abstract

    The outbreak of coronavirus disease (COVID-19) in China caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths. It is currently no specific viral protein targeted therapeutics yet. Viral nucleocapsid protein is a potential antiviral drug target, serving multiple critical functions during the viral life cycle. However, the structural information of SARS-CoV-2 nucleocapsid protein is yet to be clear. Herein, we have determined the crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein. Although overall structure is similar with other reported coronavirus nucleocapsid protein N-terminal domain, the surface electrostatic potential characteristics between them are distinct.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.06.977876v1
相关报告
  • 《 bioRxiv,4月18日,Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-04-19
    • Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain Justin D Walter, Cedric A.J. Hutter, Iwan Zimmermann, Jennifer Earp, Pascal Egloff, Michèle Sorgenfrei, Lea M Hürlimann, Imre Gonda, Gianmarco Meier, Sille Remm, Sujani Thavarasah, Philippe Plattet, Markus A. Seeger doi: https://doi.org/10.1101/2020.04.16.045419 Abstract The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has resulted in a global health and economic crisis of unprecedented scale. The high transmissibility of SARS-CoV-2, combined with a lack of population immunity and prevalence of severe clinical outcomes, urges the rapid development of effective therapeutic countermeasures. Here, we report the generation of synthetic nanobodies, known as sybodies, against the receptor-binding domain (RBD) of SARS-CoV-2. In an expeditious process taking only twelve working days, sybodies were selected entirely in vitro from three large combinatorial libraries, using ribosome and phage display. We obtained six strongly enriched sybody pools against the isolated RBD and identified 63 unique anti-RBD sybodies which also interact in the context of the full-length SARS-CoV-2 spike protein. It is anticipated that compact binders such as these sybodies could feasibly be developed into an inhalable drug that can be used as a convenient prophylaxis against COVID-19. Moreover, generation of polyvalent antivirals, via fusion of anti-RBD sybodies to additional small binders recognizing secondary epitopes, could enhance the therapeutic potential and guard against escape mutants. We present full sequence information and detailed protocols for the identified sybodies, as a freely accessible resource. This report will be updated as we further characterize the identified sybodies, in terms of affinities, scaled-up purification yields, and their potential to neutralize SARS-CoV-2 infections. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《Nature,3月30日,Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-31
    • Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, Xuanling Shi, Qisheng Wang, Linqi Zhang & Xinquan Wang Nature (2020) Abstract A novel and highly pathogenic coronavirus (SARS-CoV-2) has caused an outbreak in Wuhan city, Hubei province of China since December 2019, and soon spread nationwide and spilled over to other countries around the world1–3. To better understand the initial step of infection at an atomic level, we determined the crystal structure of the SARS-CoV-2 spike receptor-binding domain (RBD) bound to the cell receptor ACE2 at 2.45 Å resolution. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also utilizes ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are critical for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD.