Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain
Justin D Walter, Cedric A.J. Hutter, Iwan Zimmermann, Jennifer Earp, Pascal Egloff, Michèle Sorgenfrei, Lea M Hürlimann, Imre Gonda, Gianmarco Meier, Sille Remm, Sujani Thavarasah, Philippe Plattet, Markus A. Seeger
doi: https://doi.org/10.1101/2020.04.16.045419
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has resulted in a global health and economic crisis of unprecedented scale. The high transmissibility of SARS-CoV-2, combined with a lack of population immunity and prevalence of severe clinical outcomes, urges the rapid development of effective therapeutic countermeasures. Here, we report the generation of synthetic nanobodies, known as sybodies, against the receptor-binding domain (RBD) of SARS-CoV-2. In an expeditious process taking only twelve working days, sybodies were selected entirely in vitro from three large combinatorial libraries, using ribosome and phage display. We obtained six strongly enriched sybody pools against the isolated RBD and identified 63 unique anti-RBD sybodies which also interact in the context of the full-length SARS-CoV-2 spike protein. It is anticipated that compact binders such as these sybodies could feasibly be developed into an inhalable drug that can be used as a convenient prophylaxis against COVID-19. Moreover, generation of polyvalent antivirals, via fusion of anti-RBD sybodies to additional small binders recognizing secondary epitopes, could enhance the therapeutic potential and guard against escape mutants. We present full sequence information and detailed protocols for the identified sybodies, as a freely accessible resource. This report will be updated as we further characterize the identified sybodies, in terms of affinities, scaled-up purification yields, and their potential to neutralize SARS-CoV-2 infections.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.