《Nature,3月30日,Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-31
  • Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

    Jun Lan, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, Xuanling Shi, Qisheng Wang, Linqi Zhang & Xinquan Wang

    Nature (2020)

    Abstract

    A novel and highly pathogenic coronavirus (SARS-CoV-2) has caused an outbreak in Wuhan city, Hubei province of China since December 2019, and soon spread nationwide and spilled over to other countries around the world1–3. To better understand the initial step of infection at an atomic level, we determined the crystal structure of the SARS-CoV-2 spike receptor-binding domain (RBD) bound to the cell receptor ACE2 at 2.45 Å resolution. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also utilizes ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are critical for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD.

  • 原文来源:https://www.nature.com/articles/s41586-020-2180-5
相关报告
  • 《Nature,3月30日,Structural basis of receptor recognition by SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-31
    • Structural basis of receptor recognition by SARS-CoV-2 Jian Shang, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara, Qibin Geng, Ashley Auerbach & Fang Li Nature (2020) Abstract A novel SARS-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans1,2. A key to tackling this epidemic is to understand the virus’s receptor recognition mechanism, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor - human ACE2 (hACE2)3,4. Here we determined the crystal structure of the SARS-CoV-2 receptor-binding domain (RBD) (engineered to facilitate crystallization) in complex with hACE2. Compared with the SARS-CoV RBD, a hACE2-binding ridge in SARS-CoV-2 RBD takes a more compact conformation; moreover, several residue changes in SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD/hACE2 interface.
  • 《Nature,8月5日,A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-08-18
    • A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2 Wanbo Tai, Xiujuan Zhang, Aleksandra Drelich, Juan Shi, Jason C. Hsu, Larry Luchsinger, Christopher D. Hillyer, Chien-Te K. Tseng, Shibo Jiang & Lanying Du Cell Research (2020) Dear Editor, The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need to develop effective and safe vaccines. Similar to SARS-CoV, SARS-CoV-2 recognizes angiotensin-converting enzyme 2 (ACE2) as receptor for host cell entry.1,2 SARS-CoV-2 spike (S) protein consists of S1, including receptor-binding domain (RBD), and S2 subunits.3,4 We previously demonstrated that RBDs of SARS-CoV and MERS-CoV serve as important targets for the development of effective vaccines.