《稀土氧化物助力超稳定催化,科学家实现高效氢能生产》

  • 来源专题:关键矿产与绿色冶金
  • 编译者: 欧冬智
  • 发布时间:2025-02-25
  • 北京大学和中国科学院大学的研究团队在《Nature》期刊上发表了关于一种新型高活性产氢催化剂的研究,提出通过在Pt/γ-Mo2N催化剂表面构建稀土氧化物纳米覆盖层来提高催化剂的稳定性。该策略有效保护了催化剂的高活性界面,显著延长了催化剂的使用寿命超过1000小时,并创造了超过1500万的催化转化数,突破了甲醇-水重整反应的稳定性瓶颈。这一成果为催化剂的高活性、高选择性和高稳定性提供了新的设计思路,预计将在绿色能源和可持续化学工业中发挥重要作用。
  • 原文来源:http://paper.sciencenet.cn/htmlpaper/2025/2/2025213165737668128355.shtm
相关报告
  • 《让二氧化碳高效变身工业原料 分子工程帮助科学家找到最好催化剂》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-25
    • 能源短缺和全球变暖已成为人类面临的两大难题。由于化石能源的过量使用,一方面人类赖以生存的传统化石燃料正消耗殆尽;另一方面大气中二氧化碳(CO2)浓度升高,导致全球的温室效应,给地球带来了不可逆的生态环境问题。若利用可再生能源将CO2转变成工业燃料,既解决了其在大气中浓度过高的问题,也缓解了新能源替代化石能源短缺的迫切需求。 CO2电催化还原为碳基燃料和化工原料被科学家认为是一种重要的潜在技术途径。然而,目前CO2还原电催化剂性能不足和系统成本高昂制约了该技术的应用。如何设计高效的催化剂,以提高反应的能量转换效率以及产物选择性是亟待解决的重要问题。 南方科技大学材料科学与工程系教授梁永晔团队、化学系副教授王阳刚团队与合作者共同发展了分子分散电催化剂的体系以及分子工程调控方法,构建了基于金属酞菁的高性能CO2还原电催化剂,使得一氧化碳(CO)产物选择性在大电流密度下接近100%,接近工业CO2还原的要求。相关研究成果日前在线发表于《自然—能源》。 寻找最佳催化剂 自19世纪末期以来,大气中CO2的浓度已从280ppm增加至目前的400ppm,探索有效消耗CO2并将其高效转化为人类可用之物的技术,成为全球科学家关注的重点。 CO2电催化还原,可以使用来自可再生能源的电能,在常温常压的反应条件下,将CO2一步转化为如CO、碳氢化合物等高附加值碳基燃料及化学品,被认为是非常有前途的技术方法。 “将CO2还原为重要的工业原料CO是相对较成熟的技术,目前反应选择性与能量转换效率较其他产物的转化高。但实际应用中,仍需要解决大电流密度工作条件下的催化剂产物选择性以及稳定性问题。”论文通讯作者之一梁永晔告诉《中国科学报》。 在CO2电催化还原的应用中,催化剂是关键环节,其必须具有高的选择性、低的过电位和好的稳定性,才能高效地产生有价值的碳基产品。近年来,CO2还原电催化剂是一个研究热点,并取得了诸多研究进展。 梁永晔介绍,目前较好的催化剂包括基于贵金属如金、银的材料,以及单原子电催化剂等,但还存在诸多不足,比如催化剂成本过高而难以广泛应用、材料结构复杂、选择性不够理想等。 最近,诸如酞菁钴(CoPc)等金属大环配合物分子被发现可作为催化剂在气体扩散电极下将CO2转化为CO。“但在大电流下,它们的稳定性较差。此外,对单原子催化剂以及金属大环配合物催化剂的结构与催化性能关系认识不足,制约了催化剂性能的优化。”梁永晔说。 针对这些问题,梁永晔团队前期研究发现,酞菁钴—碳纳米管(CoPc/CNT)的复合催化剂展现出了比纯CoPc分子更高的CO2还原催化性能,而且这种复合方法还可揭示一系列MePc(Me = Mn,Fe,Co)分子的本征活性,大大提高了CO2还原成CO的电催化性能。 这一次,梁永晔团队在过去的基础上,有了新的探索发现。 接近工业要求的理想催化剂 纯金属大环配合物的CO2还原电催化剂存在分子导电性差、易聚集等问题,制约了其催化性能;而热解制备的单原子催化剂结构复杂、难调控,也限制了此类催化剂的研究。 基于以上现状,梁永晔团队首先通过将金属大环配合物分子级分散于导电碳纳米管上得到分子分散型电催化剂(MDE),双球差电镜表征揭示其结构与单原子电催化剂类似。具有明确Ni—N4结构的酞菁镍(NiPc)分子MDE对CO2还原为CO具有高选择性,催化活性和选择性要优于Ni单原子催化剂和聚集型的NiPc分子。 “但在应用时,我们发现该催化剂稳定性较差。”梁永晔说,为此,他们进一步使用分子工程手段,通过在酞菁(Pc)上引入不同的取代基来调控其催化性能。 研究发现,引入吸电子特性的氰基(CN-)取代可提高其活性,但稳定性仍然不好。而引入给电子特性的甲氧基(OMe-)取代则可有效提高稳定性,并可进一步改善其选择性,实现近乎100%的CO选择性。 接着,研究人员继续将催化剂应用于气体扩散电极装置进行测试,发现NiPc-OMe MDE在还原电流密度在10~300mA cm-2范围内的CO产物选择性可达到99.5%以上,且在150mA cm-2的还原电流下能稳定工作40小时。 “这样的结果接近工业CO2还原的要求,具有产业化的前景。”梁永晔表示。 机理揭示将指导相关电催化剂优化 为找到现象背后的科学原理,梁永晔与王阳刚团队、俄勒冈大学教授冯振兴团队进行合作,进一步结合理论计算和原位同步辐射表征,深入揭示了取代基调控催化性能的机理。 研究发现,具有Ni-N4结构的酞菁镍分子分散型电催化剂(NiPc MDEs)的CO2还原起峰电位与Ni中心的部分还原紧密相关,而不简单取决于理论计算中的反应能垒。CN-取代可以使分子更容易被还原,因此具有更正的起峰电位。此外,OMe-取代可以提高催化过程中Ni-N键强度以及促进CO中间体脱附,从而提高了催化稳定性。 机理的揭示也将为相关电催化剂的设计与优化提供指导。 “目前测试的电流密度以及工作时间受到器件工艺的限制,仍需进一步优化其测试条件,以测试在更大电流密度以及更长工作时间下的性能。”梁永晔说,下一步他们将继续优化催化剂设计,实现更高的催化活性,并进一步探索制备其他还原产物的条件。同时,加强在实际应用器件中的研究,推动此类催化剂的应用。 相关论文信息:https://doi.org/10.1038/s41560-020-0667-9
  • 《俄中科学家研制出新型制氢催化剂》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-12
    • 俄罗斯托木斯克理工大学(TPU)与吉林大学(中国长春)的科学家共同研制出一种用于从水中制取氢气的有效且长寿命催化剂。据研发者称,新型催化剂的耐久性和稳定性是同类更贵产品的七倍,这有助于提高从水中制氢的产量,用于化学工业和燃料制造。成果发表在《iScience》期刊上。 近年来,氢越来越被视为一种能源载体,因为与化石燃料相比,它具有许多优点。工业规模的低成本制氢通过电解(电流通过时水分子分裂)进行。然而,这一过程需要催化剂——可以降低电力成本的物质。昂贵的铂族金属在水的电解中表现出最大的催化活性。 作为现有昂贵催化剂的替代品,托木斯克理工大学和吉林大学的科学家研发出一种基于碳化钼的易于获取的水电解催化剂。他们说,这种催化剂的耐久性是现有同类产品的七倍。 该研究参与者之一、托木斯克理工大学能源工业先进材料实验室研究员尤利娅·瓦西里耶娃解释称:“我们研发了一种结构,是融合到添加氮原子的石墨基体中的碳化钼表面的氧化钼。与同类物质相比,新型催化剂的合成简单且节能,并且可在15天内保持稳定,而同类催化剂在50小时后就会失效。”她补充说,新型催化剂的生产采用非真空电弧法,该方法用于获取生产磨料、抛光材料和耐磨涂层所需的超硬材料。与生产各种元素碳化物的其他方法不同,这种方法不需要笨重的设备和隔离反应介质,而是在露天进行合成。 瓦西里耶娃强调:“析氢反应中催化剂的活性通过过电压值进行评估。标准铂基催化剂的过电压值为-31mV,过电压越接近该值越好。大多数难以生产且价格昂贵的现有同类物质的过电压值平均在-200至-250 mV之间。我们的催化剂则处于-148 mV的水平,且在合成的简易性方面具有优势。” 未来,专家计划改进新型催化剂的特性,并继续寻找更有效的成分。