《柔性材料大热,聚焦柔性OLED技术下的“热门材料”》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-01-03
  • 柔性OLED的成功量产不仅重大利好于新一代高端智能手机的制造,也因其低功耗、可弯曲的特性对可穿戴式设备的应用带来深远的影响,未来柔性屏幕将随着个人智能终端的不断渗透而广泛应用。

    基于此,TrendBank势银全新策划《2020全球显示触控技术与材料应用趋势峰会》,带您走进OLED世界,探讨OLED关键技术与材料创新新动态。

    参会前不妨先同膜链小编看一看OLED都有哪些关键材料:

    ◤ 柔性PI膜

    OLED取代LCD已是大势所趋,柔性基板材料取代传统刚性玻璃基板是实现柔性的关键点之一。聚酰亚胺PI基板材料以其优良的耐高温特性、力学性能及耐化学稳定性成为当前最佳的柔性基板材料。

    聚酰亚胺制造工艺复杂技术难度较高,核心技术掌握在全球少数企业中,OLED发展初期,日本企业几乎垄断了PI膜市场。我国PI膜产品大都集中在低端的电工级PI膜,而高端的电子级P膜则依赖进口。

    (资料来源:OFWEEK前瞻产业研究院整理)

    经过几十年的积累,不少PI膜厂商已经有了丰富的研发经验,也培养了不少技术人才,正试图打破海外巨头的垄断。除了研发和技术人才的积累,OLED、柔性电路板、石墨膜等下游重点市场的主要客户均在中国大陆,这意味着上游PI膜厂商会有更多机会和本土客户沟通、了解产品技术要求、尝试走向高端市场。

    未来,高性能PI薄膜在柔性有机薄膜太阳能电池和新一代柔性LCD、OLED显示器产业以及锂离子等新型动力蓄电池技术和产业均有着广阔的市场,我国应采用具有自主知识产权的关键生产工艺技术,推动PI薄膜及其制品的国产化进程,促进高性能PI薄膜扩大产业化生产规模。

    ◤ 封装薄膜

    对于需要柔性显示的OLED而言,薄膜封装逐渐取代不可弯折的传统封装。薄膜封装一般都是以塑料为基材,将无机氧化物沉积在衬底上形成水汽阻隔膜。

    OLED发光层的多数有机材料对水、氧气及其他污染物极为敏感,这对OLED封装材料的的水汽阻隔性能和耐冲击性能提出了更高的要求。

    目前全球主要的薄膜封装材料的供应商为韩国的Samsung SDI、LG Chem;美国3M;日本的Mitsui Chem等企业。国内企业以康得新、万顺股份和乐凯光华为主。

    随着柔性OLED屏幕需求量的提升,其薄膜材料的需求量达到4400 K.m2 ,同比增长95.4% ,预计到2020年需求量约为12000 K.m2 , 2016至2020年CAGR达96.38%。

    ◤ FPC

    柔性电路板是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性、绝佳可挠性的印刷电路板,是实现OLED柔性显示的重要材料之一。

    2018年全球FPC产值规模达127亿美元,同比增长1.4%。从全球FPC产值分布情况来看,按厂商所属地划分,全球FPC生产企业主要以日本、韩国和中国台湾为主,FPC产值分别占比37%、28%和17%,而中国大陆仅占16%。

    而按制造地划分,随着FPC产业逐渐向中国转移,国际厂商纷纷在国内投资设厂,大陆的FPC产值不断上升,2018年中国大陆FPC产值占比达56%。

    随着FPC生产重心逐步向中国转移,国内厂商纷纷加速建厂扩产,目前中国FPC厂商主要包括弘信电子、景旺电子、上达电子、珠海元盛、安捷利、精诚达和三德冠。

    ◤ OLED发光与通用材料

    OLED材料是OLED现实技术的核心,是OLED实现自发光的基础。OLED材料主要包括传输层材料(空穴传输层HTL、电子传输层ETL)、注入层材料HIL以及有机发光材料OLL。

    全球OLED材料供应受控于海外厂商,其有机材料专业布局基本被国外厂商垄断。OLED荧光材料专利由出光兴产、默克、LG、陶氏、德山、斗山等海外公司拥有,小分子磷光OLED染料由美国UDC公司拥有。超敏荧光材料( TADF )技术刚刚起步,德日领先。我国企业技术积累薄弱,无核心专利产品,以仿制或者技术含量较低的中间体和单体粗品为主。

    有机发光材料是OLED中最重要的材料之一。

    从发展历程来看, OLED发光材料主要分为三代。第一代为荧光材料,第二代为磷光材料,第三代为TADF材料(目前尚在研发)。第一代荧光材料的极限效率是25% ,第二代磷光材料可将单台的激发状态转换到三重态,效率接近100% ;目前蓝光主要使用第一代荧光,红光、绿光用第二代磷光。

    OLED通用材料包括电子注入材料、电子传输材料、空穴注入材料、空穴传输材料。

    根据Ofweek产业研究院数据, 2017年全球OLED通用材料市场规模是4.52亿美元,2018年将增长到6.98亿美元。

    OLED通用材料生产主要还集中在韩国、日本、德国和美国厂商手中,这些厂商经过多年的发展已经形成了较完整的产业链,基本上都有对口合作的、稳定的OLED前段材料供应商。

    国内企业目前主要从事OLED中间体和单体粗品生产。国内OLED中间体、单体粗品的供应商主要包括万润、瑞联、惠成、阿格蕾雅、奥来德等,目前已实现规模量产并进入全球OLED材料供应链。

    随着国内产业链的日趋成熟,优秀的国产企业如强力新材、万润股份等,逐渐突破封锁,已经具备生产部分OLED终端材料的核心技术和能力,有望从前端材料代工厂迈入终端材料设计制造商的转型。

    ◤ FMM

    精细金属掩模版是OLED蒸镀工艺中的消耗性核心零部件,其主要作用是在OLED生产过程中沉积RGB有机物质并形成像素,在需要的地方准确和精细地沉淀有机物质,提高分辨率和良率。

    由于蒸镀工艺中对FMM材料的热膨胀性能要求较高,因此每种组分的材料亦有所不同。

    FMM材料目前主要供应商是DNP,此前DNP与Samsung Display签署垄断性合约,至2018年合约到期,BOE才能够与DNP达成合作协议,为其提供WQHD级手机用的FMM材料。

    2018年全球FMM材料市场规模是4.2亿美元,同比增长79.9% ;预计到2020年全球FMM材料的市场规模将达到7.9亿美元, 2016- 2020年CAGR为59.7%。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=554558
相关报告
  • 《柔性热电材料研究获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-06
    • 许昌学院教授郑直团队在环境友好、低成本制备高效率热电材料和技术方面取得重要进展,获得了室温水溶液反应快速、结构独特且性能优越的硒化银热电薄膜与器件。相关研究成果以“面向商用柔性热电器件的微结构定制β-硒化银(β-Ag2Se)薄膜”为题在线发表于材料科学领域期刊《先进材料》 可穿戴设备让人类成为物联网的一部分并显示出巨大的商业化前景。但由于各种电池的寿命所限,持续为可穿戴或嵌入式设备供电正面临巨大挑战。 郑直介绍说,热电发电器 (TEG) 能够以独特的方式将热能(废热)转化为电能,为可穿戴设备提供了理想能量供给方式。热电器件的热电优值、功率因子和最大输出功率密度等反映了不同微观结构对材料热电性能的影响,同时优化塞贝克系数、电导率和热导率等参数非常困难。 “另外,块体材料由于刚性特征,限制了其在柔性热电发电器中的应用。然而,薄膜硫族化物却以其高热电转换性能和柔性,为未来人工智能和可穿戴设备指明了前景。”郑直说,在这方面,β-Ag2Se在室温下作为柔性TEGs所表现出的显著优势受到了极大关注。然而,先前报道的硒化策略,不可避免地需要相对较高的温度,或者需要高压或真空条件,均不利于硒化银材料的进一步商业化推广。 自2005年开始,郑直课题组开展金属表面单质反应在能量转换中的应用研究。针对该问题,研究人员经过大量实验,最终使整个硒化反应可以在室温下进行,并可在1分钟内(最快15秒)完成。经过优化的薄膜功率因子和热电优值分别达到2590 μW m-1 K-2 和1.2的高值。以此薄膜直接作为热电腿原位制备的系列柔性薄膜热电发电器件,室温工作条件下器件功率密度达到27.6 W·m-2 (30 K温差)和124 W·m-2 (30 K温差)的超高性能,可以与商业化的 Bi2Te3(锑化铋)材料相媲美,具有工业应用前景。 许昌学院为论文第一作者与通讯作者单位,该校青年教师雷岩与华东师范大学齐瑞娟为共同第一作者,雷岩、Takao Mori、郑直为通讯作者。 该研究成果也是该校实施OPCE人才培养战略的具体体现,为探索应用型大学的科教融合提供了实践经验。该研究得到了国家自然科学基金、河南省高层次人才特殊支持计划、河南省高校科技创新团队等计划的支持。 相关论文信息:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202104786
  • 《这是一种由奇异材料制成的柔性电子产品》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-10-09
    • 麻省理工学院的研究人员发明了一种在氮化镓衬底上通过二维材料生长单晶氮化镓薄膜的方法。氮化镓薄膜随后被柔性基板剥离,显示出来自薄膜干涉的彩虹色。这项技术将为柔性电子器件和晶圆的再利用铺平道路。 授信人:孔伟、关桥;知识共享署名非商业无衍生品许可 如今,绝大多数计算设备都是由硅构成的,硅是地球上仅次于氧的第二大元素。硅可以在岩石、粘土、沙子和土壤中以各种形式被发现。虽然它不是地球上现存的最好的半导体材料,但它是目前最容易得到的。因此,硅是大多数电子设备中使用的主要材料,包括传感器、太阳能电池,以及计算机和智能手机中的集成电路。 现在,麻省理工学院的工程师们已经开发出一种制造超薄半导体薄膜的技术。为了演示他们的技术,研究人员制作了由砷化镓、氮化镓和氟化锂制成的柔性薄膜,这种材料比硅表现出更好的性能,但迄今为止在功能器件上的生产成本高得令人望而却步。 研究人员说,这项新技术提供了一种成本效益高的方法,可以用任何半导体元件的组合制成灵活的电子产品,比目前的硅基器件性能更好。 “我们已经开辟了一种方法,可以利用多种不同的材料系统(除了硅)来制造柔性电子产品,”1947级机械工程和材料科学与工程学系职业发展副教授金哲万(Jeehwan Kim)说。Kim设想这种技术可以用于制造低成本、高性能的设备,如柔性太阳能电池,可穿戴电脑和传感器。 今天《自然材料》杂志报道了这项新技术的细节。除了金纸的麻省理工学院的合作者包括魏,华山,Kuan俏,Yunjo Kim Kyusang Lee Doyoon李,汤姆Osadchy,理查德•莫尔纳sang hoon Bae,杨Shao-Horn,杨Yu和杰弗里•格罗斯曼与中山大学的研究人员一起,弗吉尼亚大学,德克萨斯大学达拉斯,美国海军研究实验室,俄亥俄州立大学,佐治亚理工学院。 现在你看到了,现在你看不到了 在2017年,Kim和他的同事发明了一种方法,用石墨烯制造昂贵的半导体材料的“复制品”。堆放时他们发现石墨烯的纯净,昂贵的半导体材料,如砷化镓晶片,然后流入和砷化镓堆栈的原子,原子似乎在某种程度上与底层原子层交互,如果中间石墨烯是无形的或透明的。结果,这些原子组装成底层半导体晶圆的精确的单晶模式,形成一个精确的拷贝,然后很容易从石墨烯层剥离出来。 他们称之为“远程外延”的技术,提供了一种廉价的方法来制造多个砷化镓薄膜,只需使用一个昂贵的底层晶圆。 在他们报告了第一个结果后不久,研究小组想知道他们的技术是否可以用于复制其他半导体材料。他们尝试在硅和锗(两种廉价的半导体)上应用远程外延,但发现当这些原子在石墨烯上流动时,它们无法与各自的底层相互作用。就好像以前透明的石墨烯突然变得不透明,阻止了硅原子和锗原子“看到”另一边的原子。 碰巧的是,硅和锗是元素周期表中同一组元素中的两种元素。具体来说,这两种元素属于第四组,这是一种离子中性的材料,意味着它们没有极性。 “这给了我们一个提示,”Kim说。 也许,该团队推断,原子只有在带有离子电荷的情况下,才能通过石墨烯相互作用。例如,在砷化镓的例子中,镓在界面上带负电荷,而砷带正电荷。这种电荷差异或极性可能帮助原子通过石墨烯进行相互作用,就好像石墨烯是透明的一样,并复制底层原子模式。 “我们发现通过石墨烯的相互作用是由原子的极性决定的。对于最强的离子结合材料,它们甚至可以通过三层石墨烯相互作用。“这就像两个磁铁可以吸引,即使是通过一张薄纸。” 异性相吸 研究人员利用远程外延技术复制了不同极性的半导体材料,从中性硅和锗,到微极化砷化镓,最后是高度极化的氟化锂——一种比硅更好、更贵的半导体。 他们发现,极性越大,原子间的相互作用就越强,甚至在某些情况下,通过多个石墨烯薄片。他们能生产的每一种薄膜都是有弹性的,只有几十到几百纳米厚。 研究小组发现,原子相互作用的物质也很重要。除了石墨烯外,他们还试验了一种六方氮化硼(hBN)中间层,这种材料类似于石墨烯的原子模式,具有类似于聚四氟乙烯的性质,使叠加材料在复制后很容易脱落。 然而,hBN是由相反的带电的硼和氮原子组成,它们在材料内部产生极性。在他们的实验中,研究人员发现,任何原子在hBN流动,即使他们高度极化,完全无法与他们潜在的晶片,这表明极性的兴趣和中间材料的原子决定原子相互作用,形成最初的半导体晶片的副本。 “现在我们真正明白了通过石墨烯存在原子相互作用的规则,”Kim说。 他说,有了这种新的认识,研究人员现在只需看看周期表,就能选出两个电荷相反的元素。一旦他们获得或制造了一个由相同元件制成的主晶圆,他们就可以应用团队的远程外延技术来制造多个完全相同的原始晶圆。 “人们大多使用硅片,因为它们很便宜,”Kim说。“现在我们的方法开启了一种使用高性能非硅材料的途径。你可以只买一个昂贵的晶圆片,然后一遍又一遍地复制,然后重复使用晶圆片。现在这种技术的材料库完全扩展了" Kim设想,远程外延技术现在可以用以前各种奇异的半导体材料制成超薄的柔性薄膜——只要这种材料是由具有一定极性的原子制成的。这种超薄薄膜有可能一层一层地堆积起来,生产出微型、灵活的多功能设备,比如可穿戴传感器、柔性太阳能电池,甚至在遥远的未来,“可以附着在皮肤上的手机”。 “在智能城市,我们可能想要把小型计算机放在任何地方,我们需要低功耗、高灵敏度的计算和传感设备,这些设备由更好的材料制成,”Kim说。“这项研究开启了通往这些设备的道路。” 这项研究部分得到了国防高级研究计划局、能源部、空军研究实验室、LG电子、爱茉莉太平洋、林研究和模拟设备的支持。 ——文章发布于2018年10月8日