《这是一种由奇异材料制成的柔性电子产品》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-10-09
  • 麻省理工学院的研究人员发明了一种在氮化镓衬底上通过二维材料生长单晶氮化镓薄膜的方法。氮化镓薄膜随后被柔性基板剥离,显示出来自薄膜干涉的彩虹色。这项技术将为柔性电子器件和晶圆的再利用铺平道路。

    授信人:孔伟、关桥;知识共享署名非商业无衍生品许可

    如今,绝大多数计算设备都是由硅构成的,硅是地球上仅次于氧的第二大元素。硅可以在岩石、粘土、沙子和土壤中以各种形式被发现。虽然它不是地球上现存的最好的半导体材料,但它是目前最容易得到的。因此,硅是大多数电子设备中使用的主要材料,包括传感器、太阳能电池,以及计算机和智能手机中的集成电路。

    现在,麻省理工学院的工程师们已经开发出一种制造超薄半导体薄膜的技术。为了演示他们的技术,研究人员制作了由砷化镓、氮化镓和氟化锂制成的柔性薄膜,这种材料比硅表现出更好的性能,但迄今为止在功能器件上的生产成本高得令人望而却步。

    研究人员说,这项新技术提供了一种成本效益高的方法,可以用任何半导体元件的组合制成灵活的电子产品,比目前的硅基器件性能更好。

    “我们已经开辟了一种方法,可以利用多种不同的材料系统(除了硅)来制造柔性电子产品,”1947级机械工程和材料科学与工程学系职业发展副教授金哲万(Jeehwan Kim)说。Kim设想这种技术可以用于制造低成本、高性能的设备,如柔性太阳能电池,可穿戴电脑和传感器。

    今天《自然材料》杂志报道了这项新技术的细节。除了金纸的麻省理工学院的合作者包括魏,华山,Kuan俏,Yunjo Kim Kyusang Lee Doyoon李,汤姆Osadchy,理查德•莫尔纳sang hoon Bae,杨Shao-Horn,杨Yu和杰弗里•格罗斯曼与中山大学的研究人员一起,弗吉尼亚大学,德克萨斯大学达拉斯,美国海军研究实验室,俄亥俄州立大学,佐治亚理工学院。

    现在你看到了,现在你看不到了

    在2017年,Kim和他的同事发明了一种方法,用石墨烯制造昂贵的半导体材料的“复制品”。堆放时他们发现石墨烯的纯净,昂贵的半导体材料,如砷化镓晶片,然后流入和砷化镓堆栈的原子,原子似乎在某种程度上与底层原子层交互,如果中间石墨烯是无形的或透明的。结果,这些原子组装成底层半导体晶圆的精确的单晶模式,形成一个精确的拷贝,然后很容易从石墨烯层剥离出来。

    他们称之为“远程外延”的技术,提供了一种廉价的方法来制造多个砷化镓薄膜,只需使用一个昂贵的底层晶圆。

    在他们报告了第一个结果后不久,研究小组想知道他们的技术是否可以用于复制其他半导体材料。他们尝试在硅和锗(两种廉价的半导体)上应用远程外延,但发现当这些原子在石墨烯上流动时,它们无法与各自的底层相互作用。就好像以前透明的石墨烯突然变得不透明,阻止了硅原子和锗原子“看到”另一边的原子。

    碰巧的是,硅和锗是元素周期表中同一组元素中的两种元素。具体来说,这两种元素属于第四组,这是一种离子中性的材料,意味着它们没有极性。

    “这给了我们一个提示,”Kim说。

    也许,该团队推断,原子只有在带有离子电荷的情况下,才能通过石墨烯相互作用。例如,在砷化镓的例子中,镓在界面上带负电荷,而砷带正电荷。这种电荷差异或极性可能帮助原子通过石墨烯进行相互作用,就好像石墨烯是透明的一样,并复制底层原子模式。

    “我们发现通过石墨烯的相互作用是由原子的极性决定的。对于最强的离子结合材料,它们甚至可以通过三层石墨烯相互作用。“这就像两个磁铁可以吸引,即使是通过一张薄纸。”

    异性相吸

    研究人员利用远程外延技术复制了不同极性的半导体材料,从中性硅和锗,到微极化砷化镓,最后是高度极化的氟化锂——一种比硅更好、更贵的半导体。

    他们发现,极性越大,原子间的相互作用就越强,甚至在某些情况下,通过多个石墨烯薄片。他们能生产的每一种薄膜都是有弹性的,只有几十到几百纳米厚。

    研究小组发现,原子相互作用的物质也很重要。除了石墨烯外,他们还试验了一种六方氮化硼(hBN)中间层,这种材料类似于石墨烯的原子模式,具有类似于聚四氟乙烯的性质,使叠加材料在复制后很容易脱落。

    然而,hBN是由相反的带电的硼和氮原子组成,它们在材料内部产生极性。在他们的实验中,研究人员发现,任何原子在hBN流动,即使他们高度极化,完全无法与他们潜在的晶片,这表明极性的兴趣和中间材料的原子决定原子相互作用,形成最初的半导体晶片的副本。

    “现在我们真正明白了通过石墨烯存在原子相互作用的规则,”Kim说。

    他说,有了这种新的认识,研究人员现在只需看看周期表,就能选出两个电荷相反的元素。一旦他们获得或制造了一个由相同元件制成的主晶圆,他们就可以应用团队的远程外延技术来制造多个完全相同的原始晶圆。

    “人们大多使用硅片,因为它们很便宜,”Kim说。“现在我们的方法开启了一种使用高性能非硅材料的途径。你可以只买一个昂贵的晶圆片,然后一遍又一遍地复制,然后重复使用晶圆片。现在这种技术的材料库完全扩展了"

    Kim设想,远程外延技术现在可以用以前各种奇异的半导体材料制成超薄的柔性薄膜——只要这种材料是由具有一定极性的原子制成的。这种超薄薄膜有可能一层一层地堆积起来,生产出微型、灵活的多功能设备,比如可穿戴传感器、柔性太阳能电池,甚至在遥远的未来,“可以附着在皮肤上的手机”。

    “在智能城市,我们可能想要把小型计算机放在任何地方,我们需要低功耗、高灵敏度的计算和传感设备,这些设备由更好的材料制成,”Kim说。“这项研究开启了通往这些设备的道路。”

    这项研究部分得到了国防高级研究计划局、能源部、空军研究实验室、LG电子、爱茉莉太平洋、林研究和模拟设备的支持。

    ——文章发布于2018年10月8日

相关报告
  • 《一维材料为下一代电子产品打开了大门》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2018-05-05
    • 加利福尼亚大学的工程师们展示了一种由外来材料制成的原型设备,其电流密度比传统铜互连技术高出50倍。 电流密度是给定点处的每个横截面积的电流量。随着集成电路中的晶体管变得越来越小,它们需要越来越高的电流密度来达到所需的水平。大多数传统的电导体,例如铜,由于在高电流密度下过热或其他因素而易于断裂,这对创造越来越小的组件造成障碍。 电子行业需要硅和铜的替代品,来达到可以在几纳米的尺寸下维持极高的电流密度。 石墨烯的问世是一项巨大的全球性的成就,旨在调查其他二维或二维分层材料,以满足对可维持高电流密度的纳米级电子元件的需求。
  • 《喜讯!这种新材料问世,你可以放心的玩电子产品了》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-17
    • 当你走在路上,看见地上有垃圾,你会怎么办? 你可以把它踢到一边,但它还是会在那里继续恶心人。 但如果你把它捡起来丢进垃圾桶,然后深藏功与名,保护了环境,你就是最靓的仔! 这就是把垃圾踢到一边与捡起来的区别! 这是我们用眼睛能看见的垃圾污染,而世界上还有一些我们看不见的污染,比如说,电磁污染。 21世纪以来,随着科学技术的飞速发展,电磁微波理论得到了深入研究,越来越多的电子产品设备及系统得到开发应用,进入了人们的日常生活,但它为我们服务丰富我们生活的同时,也在时时刻刻向自由空间发射着电磁辐射。这些无用电磁波会对设备产生干扰,改变着人们看不见的环境,甚至会对人体造成伤害。随着电子产品越来越多,电磁干扰也越来越严重,因此如何消除电磁干扰有着非常大的意义。 对于电磁干扰,人们倾向于用屏蔽材料对抗电磁干扰,例如直接用铜笼罩住整个电路板,或者外加金属箔片屏蔽单独组件。然而,这无疑会大大增加设备的体积和总重量。 另外,此前大多数电磁干扰屏蔽材料虽然可以通过反射电磁波来保护元件,但它们无法解决环境中的电磁污染的传播问题。 近日,德雷克塞尔大学的工程师发现,一种名为碳氮化钛的二维材料是一种很好的屏蔽材料,这得益于其吸收而非反射电磁波的能力。这是比单纯的反射波更可持续的处理电磁污染的方法,因为反射波仍然会损坏其他没有屏蔽的设备。 这,就像是把垃圾踢开和捡起垃圾的区别! 据悉,早在2011年德雷克塞尔大学首先制备了碳化钛二维材料,并发现这种材料具有许多特殊的性能,包括高强度、高导电性和分子过滤能力。碳化钛的特殊特性是,在当时,它能比任何已知材料更有效地阻挡和吸收电磁干扰,包括目前大多数电子设备中使用的金属箔。 后来,当德雷克塞尔大学继续考察该家族的其他成员时,他们发现了碳氮化钛更优异的特性,使其成为屏蔽电磁干扰的更有前途的候选材料。 他们认为:与碳化钛相比,碳氮化钛具有非常相似的结构,除了其中一个用氮原子取代了一半的碳原子外,它们实际上是相同的,但碳化钛的导电性要差一个数量级。 这也意味着,碳氮化钛可以用来单独涂覆设备内部的组件,以遏制它们的电磁辐射,即使它们被紧密放置在一起。像苹果这样的公司几年来一直在尝试这种遏制策略,但成功率受限于铜箔的厚度。随着设备设计者努力通过将设备变得更小、更不显眼、更集成化来使其无处不在,这种策略很可能成为新的标准。 其实,不止德雷克塞尔大学在这方面研究,像我国北京工业大学等科研院所在此方面也有深入的研究。 随着电子产品、电子系统、军事对抗等领域的不断创新与发展,对于电磁吸波材料的要求也越来越严格,在满足“薄、轻、宽、强”的同时,还要适应复杂多变的环境,如高温、酸碱、强磁环境等。碳化钛以及碳氮化钛因抗氧化性强,耐酸碱的优点,今后在高温电磁吸波材料领域必会被广泛应用。 参考来源: [1]洪祥云.掺杂氮化钛粉体电磁特性及高温吸波性能 [2]《科学》杂志