《日本产业技术综合研究所(AIST)开发可通用测量功率设备S参数的系统,可轻松评估功率器件的高频特性》

  • 来源专题:计量基标准与精密测量
  • 编译者: 李晓萌
  • 发布时间:2025-03-27
  • 近日,日本产业技术综合研究所(AIST)物理计量标准研究部门主任研究员岸川谅子、研究战略企划部副部长堀部雅弘,与株式会社テクノプローブ(Technoprobe)、Keysight Technologies, Inc.合作,开发了一种系统,能够通用评估具有各种电极形状的表面安装功率器件的高频特性。

    功率器件是一种半导体器件,通过高速开关大电流来高效地转换和控制电力,在电动汽车、铁路、太阳能发电、家用电器等多个领域得到广泛应用。在高开关频率下运行功率器件,可以实现功率器件、电感器、电容器等的小型化,最终有望实现系统的小型化和轻量化。为了设计在高开关频率下运行的电路,S参数的信息非常有用,它能表示高频信号的反射和传输特性。

    此次,AIST、Technoprobe和Keysight开发了一种探针和探针台,可以将同轴结构转换为表面安装功率器件的平面电极形状。开发的探针支持多种电极形状,可测量50 kHz至1 GHz的S参数。S参数测量变得更加简便和经济,有望为开发小型轻量的高开关频率功率电子系统做出贡献。

    该技术的详细信息在2025年3月16日至20日在美国举行的IEEE应用电力电子会议及展览上公布,同时,开发的探针和探针台将开始在日本由Technoprobe销售,在海外由T Plus Co. Ltd.销售。

    下一步,为了能够测量更多种类的功率器件,AIST将继续改进探针和探针台。此次开发的探针适用于接地芯片与信号芯片间距为3.7毫米的情况,同时AIST也能根据需要制作不同芯片间距的探针。这将使得使用探针对更多种类的功率器件进行S参数测量成为可能。在此基础上,AIST致力于为有望实现高频运行的氮化镓功率器件等的研发做出贡献。

  • 原文来源:https://www.aist.go.jp/aist_j/press_release/pr2025/pr20250319/pr20250319.html
相关报告
  • 《日本产业技术综合研究所(AIST)先进电池领域调研分析》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-12-23
    • 国立研究开发法人产业技术综合研究所(英文为National Institute of Advanced Industrial Science and Technology,简称“AIST”)作为日本最大的公共研究机构,专注于研发有利于日本产业和社会发展的技术及其产业化问题,起到将革新技术与产业化连结起来的“桥梁”作用,同时还与世界各国的主要研究机构签订合作备忘录,构建积极的全球合作网络。目前产业技术综合研究所在日本的研究据点有11个,拥有约2300名研究人员。 英文名称:Research Institute of Electrochemical Energy 中文译名:电池技术研究部 总体研究内容: 1、先进产业技术的提出,包括新产业技术种子(对推进研究开发有必要性的发明技术、能力、人才、设备等)的提出、高风险技术的实验证明等。 2、产业基础技术的提供,包括国际工业标准、材料·性能评价技术、寿命预测等。 3、核心竞争力的强化,包括纳米材料学、应用表面科学、材料开发方法论等。 研究课题 电池技术研究部主要研究的课题共13个,其中与电池相关的课题共9个,具体内容如下: 1.使用固体高分子电解质开发电化学器件电极(获日本“电化学学会女性跃进奖”) ①对环境友好的、安全的直接燃料电池方面的提案 给固体高分子型燃料电池供应甲醇等氢以外的燃料、在电极上直接氧化发电的直接燃料电池有望作为可移动电源和移动终端的充电器实现部分实用化和可利用化。日本产业技术综合研究所开发了以抗坏血酸(维他命C)为燃料的直接燃料电池。这种燃料电池不使用氢和甲醇,燃料极反应与摄取抗坏血酸时在生物体内产生的代谢反应相同,是安全无害的燃料电池。而且,抗坏血酸的氧化具有不必使用贵金属催化剂、可在电极上使用表面积大的碳材料这一特征。 ②金属空气蓄电池的固体高分子型空气电极 金属空气电池因具有高能密度,作为创新性车载蓄电池,有望实现其蓄电池化。空气电极被指出具有过电压较大、有碱性电解液的电极润湿和电解液泄露的危险、因空气中的二氧化碳而在气体扩散电极细孔内会出现碳酸盐沉淀等问题。为了改善这些问题并大幅度提高性能,电池技术研究部提出了使用阴离子交换膜及其离子聚合物的固体高分子型空气电极,作出了抑制因空气中的二氧化碳产生的性能低下以及防止液漏的可能性的报告。 ③基于化学镀层技术的高分子作动器元件 90年代,旧大阪工业技术研究所开发出了使用特殊的化学镀层法使高分子电解质膜的两面直接析出白金的、并利用了给电极接合体在水中施加电位这一现象的高分子作动器。但是,因水的电分解而产生的气泡问题成为了待解决的课题。于是,电池技术研究部着眼于根据把电极从白金变为金来扩大电位窗这一内容,通过对金属络合物和还原剂的大力研究,成功在高分子电解质膜的两面形成了平均的金电极层,与原来使用白金电极的作动器相比,在没有气体产生的情况下可形成大的弯曲。 ④化学镀层(吸附反应)下的膜电极接合体制造技术 利用化学镀层法来制造膜电极结合体的技术原本是因固体高分子型电解水制氢法在旧大阪工业技术试验所开发出的技术。此方法是在膜中吸附金属络合物,用还原剂在高分子电解质膜的表面使白金直接析出的方法,具有粘着性高、在高电流密度操作下不易产生气体等特点。 2.全固态锂电池的固-固界面结构技术 ①根据固体电解质的微细化·均匀分散来制造良好的复合电极 利用Li2S-P2S5固体电解质在加压条件下可常温烧结的特性,通过固体电解质的微细化和室温成型(常温加压烧结),电池技术研究部开发了在产业上更加方便使用的密集电极层的制作工艺。该研究部通过各种各样的方法探讨了固体电解质的粒子形状控制,并通过均匀分散硫化物固体电解质、改善电极的同质性、增大电极-电解质的接触面积、使电极层变得高密度化(减小空隙)、在正极活性物质(氧化物)粒子的接触处产生局部应力的方法,减少正极活性物质粒子的破碎。低弹性系数和可以假塑性变形的硫化物固体电解质作为控制向电极活性物质粒子进行应力集中的缓冲层起到了不错的效果。 ②全固态锂硫电池 日本产业技术综合研究所使用已开发的易于成型的高容量电极活性物质Li3NbS4,开发出了利用Li2S-P2S5固体电解质的全固态蓄电池。因为Li3NbS4是通过常温加压烧结可以假塑性变形的材料,所以在室温下的加压成型过程中加压的同时,可形成90%以上的致密成型体。即使充放电时产生大约30%的体积变化,也不产生裂缝,可实现380mAh g-1的可逆充放电并有望发现其良好的循环特性。 3.新制造工艺下抑制LiNiO2退化 虽然镍酸锂作为高容量锂离子蓄电池正极材料被抱有期待,但是在高电位充电时周期退化严重,无法充分灵活运用其特性。在目前为止对LiFeO2-Li2MnO3正极材料研究成果的基础上,通过新的制造工艺(Li2NiO3热分解法)的应用,开发出了可保持高容量(>190mAh/g)并大幅抑制了周期退化的锂过量镍酸锂正极材料。 今后的计划:在研究数据的基础上,寻找正极材料开发合作伙伴,并向电池制造商提供供应。并且,为了进一步改善电池特性,电池技术研究部将进行制造方法的探讨以及异金属置换效果的探讨。另外,该部门也将继续进行LiFeO2-Li2MnO3正极材料的开发以及大型锂离子蓄电池使用的价格便宜且高性能的正极材料的开发。 4.利用NMR开发电池材料测评技术 电池技术研究部在广泛应用于有机结构鉴别的NMR(核磁共振)技术上添加了“倾斜磁场”和“电场”,并正在测定作为与电池中存在的离子(阴离子、阳离子)“动向”相关的物性的扩散系数(m2s-1)和移动率(m2s-1V-1)。而且,该部门也在进行使用了扩散系数和导电率数据的解析,对决定了溶解于电解质的锂盐的解离度和离子移动率大小的相互作用力等内容进行预测,并对把它们作为指标的电解质和分离器结构进行设计和提案。 5.探索镁蓄电池结构材料 如果能够把轻便的多价金属且在资源上也较为丰富的镁(Mg)作为负极来利用,就可以制造出储能密度高、成本小且较为安全的电池。但是,把Mg应用于可充放电的蓄电池还在基础研究阶段,处于必须探索开发可充放电的正负极材料和适用于两极的电解液的现状。日本产业技术综合研究所发现了某种作为Mg电池的正极材料可进行可逆反应、且作为蓄电池可在室温下进行操作的有机物,同时研究了适用于此电池的电解液,改善了充放电的效果。 电池技术研究部还进行了关于“使用乙二醇二甲醚类电解液的有机物-镁二次电池的充放电特性”的研究。该项研究首次报告了有机物可以使用在镁二次电池的正极中。该研究团队发现,将该有机正极与金属镁负极、乙二醇二甲醚类镁电解液进行组合后,可以实现室温下约接近2V的放电电压,且能够进行反复的充放电。 6.开发金属多硫化物正极材料(下一代高能量密度蓄电池用电极材料的开发) 目前,能够应用在电动汽车上的、能量密度显著提高的下一代蓄电池的开发备受期待。日本产业技术综合研究所开发了结晶度较低的金属多硫化物材料,并发现这种材料拥有一种新奇的充放电机制,是一种高容量电极材料。 该研究部门开发的新材料与传统材料相比,不仅金属能够进行氧化还原,硫也可以,因此可以飞跃性地提高电池的容量。 7.实际电极中离子传导率、电子传导率测定方法研究 蓄电池、燃料电池、电容器中使用的电极是由电子导体和离子导体(电解质)组成的复合体,电子传导率、离子传导率的测定对提高电池性能、明确电池劣化主要原因非常有效。但是,实际多孔电极中的测定方法还未确立,该电池技术研究部门一直在研究开发各种类型、条件下的测定方法。另外,该部门还根据电池、燃料电池等电化学器件开发企业的要求,进行一些共同研究活动。 目前该部分的主要研究成果如下:利用电化学阻抗进行离子传导率·电子传导率测定;同时测定多孔电极离子传导率·电子传导率的“6端子法”;正确解释电化学阻抗的基础理论和手法。 8.电池内部反应不均现象可视化 该项研究由日本产业技术综合研究所、京都大学、立命馆大学、株式会社KRI共同进行,并于2016年5月23日公布了研究成果。 在该研究中,研究团队为了实现反应不均现象的可视化,使用了可获得二维数据的X射线吸收光谱测定方法。另外,研究团队还确立了在锂离子电池的电极中测量电子传导率、离子传导率的方法。通过在不同性能的锂离子电池电极中使用上述方法进行解析,研究团队最终确定电池内部的反应不均现象是由离子传导所引起的,这一现象会极大地影响电池性能。 该研究成果有助于进行锂离子电池的实用性设计,可以帮助提高电池性能。尤其是在反应不均现象较为明显的大型电池中,该研究成果将适用于汽车用锂离子电池的设计,并有望延长电池的续航距离、提高电池的安全性。 9.在电荷载子中使用分子性离子的新型二次电池 在目前的Li二次电池中,Li+作为电荷载子起作用,因此电池的电压、安全性等都收到Li本质的物性上限制。为此,该研究小组在不使用Li+或Na+的电池中进行了将分析性离子作为电荷载子进行作用的电池实证。 该电池未来备受期待的优点如下: ①比Li更低的电位⇒高电压 ②高离子传导率⇒高输入、高输出 ③没有枝晶(dendrite)⇒高安全性 ④不使用稀有金属⇒低成本
  • 《日本产业技术综合研究所(AIST)开发了大规模量子计算机的材料评估技术——支持高精度测定从低温到室温范围内开发低温、高频部件所必需的材料参数》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-01-23
    • 2023年7月27日,日本产业技术综合研究所(AIST)正式成立了量子人工智能融合技术业务发展全球研究中心(G-QuAT)。近日,该中心开发了一种用于评估低温环境下高频基板材料电气性能的新技术。 世界各地正在开发的量子计算机,尤其是那些使用超导电路的计算机,都在极低的温度下试图控制和读取量子比特,这就需要在极低温和室温之间传输高频信号。因此,要实现大规模量子计算机,必须实现低温环境下工作的高频电路的高密度化。在这种情况下,用于安装高频元件的基板材料的电气性能对整个电路的高频特性影响很大。然而,此前并没有在低温环境下评估这些特性的技术。 在这项研究中,G-QuAT开发了一种技术,将平衡型圆盘谐振器法加以改进,以便能够通过精确评估最终确定4K至300K温度范围内三种材料的电性能参数(包括介电常数、耗散因数和电导率),该方法用于在室温下高精度评估高频基板材料。这种技术将加速用于低温领域高频元件的集成化以及高密度扁平电缆的开发,为实现量子计算机大规模的应用做出贡献。 世界各国的企业和研究机构都在致力于量子计算机的大规模应用,尤其是使用超导电路的方式,已经制造出了集成数百个量子比特的量子处理器。然而,要进一步增加量子比特的数量并实现实用级别的量子计算机,仍面临一些挑战。其中之一是在极低温下将量子比特与室温测量设备连接所需的低温高频电路的高密度化。因此,使用高频基板材料实现各高频部件(放大器、衰减器、滤波器等)的集成化以及高密度扁平电缆的开发被认为是当务之急。 用于安装高频元件的基板由电介质片和金属箔的层压结构组成。此外,用于形成扁平电缆的基板也是由类似的层压结构组成。目前还没有在极低温环境下确定这些层压结构在高频区域的电气特性的技术,这阻碍了用于量子计算机的低温高频元件的开发。 AIST为了推动量子相关技术以及下一代无线通信技术的发展,一直致力于开发高频段的设备评估和材料评估的测量技术,并为相关行业提供了测量解决方案。作为这项工作的一部分,AIST正在开发一种平衡圆盘腔方法,用于确定室温下高频电路设计所需的介电片的复介电常数以及介电/金属界面的电导率(2019年1月17日产综研新闻稿,2020年6月21日产综研新闻稿)。此外,AIST还在开发用于评估高频元件在低温环境中的反射和传输特性的技术(2023年9月21日产综研新闻稿)。在这项研究中,为了加速大规模超导量子计算机不可或缺的低温高频电路的开发,AIST将这些测量技术结合起来,开发了低温环境下的材料评估新技术。 这项研究和开发得到了科学研究补助金(JSPS Grant-in-Aid for Scientific Research)“使用圆极化微波的二维电子系统复杂电导率测量方法的开发和应用(2022~2024 财年)”(JP22H01964)和“自旋波自旋电流极性控制和器件应用(2022~2024 财年)”(JP22H01936 年)的支持。 该技术将部署在全球量子与AI融合技术业务发展中心的量子硬件测试平台上,并将为相关行业提供测量服务。此外,AIST还将进一步开发用于量子计算机低温高频电路的磁性和超导材料的评估技术。 该技术的详细信息已于2025年1月15日发表在《Applied Physics Letters》期刊中。(DOI: 10.1063/5.0242356)