《日本产业技术综合研究所(AIST)先进电池领域调研分析》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-12-23
  • 国立研究开发法人产业技术综合研究所(英文为National Institute of Advanced Industrial Science and Technology,简称“AIST”)作为日本最大的公共研究机构,专注于研发有利于日本产业和社会发展的技术及其产业化问题,起到将革新技术与产业化连结起来的“桥梁”作用,同时还与世界各国的主要研究机构签订合作备忘录,构建积极的全球合作网络。目前产业技术综合研究所在日本的研究据点有11个,拥有约2300名研究人员。

    英文名称:Research Institute of Electrochemical Energy

    中文译名:电池技术研究部

    总体研究内容:

    1、先进产业技术的提出,包括新产业技术种子(对推进研究开发有必要性的发明技术、能力、人才、设备等)的提出、高风险技术的实验证明等。

    2、产业基础技术的提供,包括国际工业标准、材料·性能评价技术、寿命预测等。

    3、核心竞争力的强化,包括纳米材料学、应用表面科学、材料开发方法论等。

    研究课题

    电池技术研究部主要研究的课题共13个,其中与电池相关的课题共9个,具体内容如下:

    1.使用固体高分子电解质开发电化学器件电极(获日本“电化学学会女性跃进奖”)

    ①对环境友好的、安全的直接燃料电池方面的提案

    给固体高分子型燃料电池供应甲醇等氢以外的燃料、在电极上直接氧化发电的直接燃料电池有望作为可移动电源和移动终端的充电器实现部分实用化和可利用化。日本产业技术综合研究所开发了以抗坏血酸(维他命C)为燃料的直接燃料电池。这种燃料电池不使用氢和甲醇,燃料极反应与摄取抗坏血酸时在生物体内产生的代谢反应相同,是安全无害的燃料电池。而且,抗坏血酸的氧化具有不必使用贵金属催化剂、可在电极上使用表面积大的碳材料这一特征。

    ②金属空气蓄电池的固体高分子型空气电极

    金属空气电池因具有高能密度,作为创新性车载蓄电池,有望实现其蓄电池化。空气电极被指出具有过电压较大、有碱性电解液的电极润湿和电解液泄露的危险、因空气中的二氧化碳而在气体扩散电极细孔内会出现碳酸盐沉淀等问题。为了改善这些问题并大幅度提高性能,电池技术研究部提出了使用阴离子交换膜及其离子聚合物的固体高分子型空气电极,作出了抑制因空气中的二氧化碳产生的性能低下以及防止液漏的可能性的报告。

    ③基于化学镀层技术的高分子作动器元件

    90年代,旧大阪工业技术研究所开发出了使用特殊的化学镀层法使高分子电解质膜的两面直接析出白金的、并利用了给电极接合体在水中施加电位这一现象的高分子作动器。但是,因水的电分解而产生的气泡问题成为了待解决的课题。于是,电池技术研究部着眼于根据把电极从白金变为金来扩大电位窗这一内容,通过对金属络合物和还原剂的大力研究,成功在高分子电解质膜的两面形成了平均的金电极层,与原来使用白金电极的作动器相比,在没有气体产生的情况下可形成大的弯曲。

    ④化学镀层(吸附反应)下的膜电极接合体制造技术

    利用化学镀层法来制造膜电极结合体的技术原本是因固体高分子型电解水制氢法在旧大阪工业技术试验所开发出的技术。此方法是在膜中吸附金属络合物,用还原剂在高分子电解质膜的表面使白金直接析出的方法,具有粘着性高、在高电流密度操作下不易产生气体等特点。

    2.全固态锂电池的固-固界面结构技术

    ①根据固体电解质的微细化·均匀分散来制造良好的复合电极

    利用Li2S-P2S5固体电解质在加压条件下可常温烧结的特性,通过固体电解质的微细化和室温成型(常温加压烧结),电池技术研究部开发了在产业上更加方便使用的密集电极层的制作工艺。该研究部通过各种各样的方法探讨了固体电解质的粒子形状控制,并通过均匀分散硫化物固体电解质、改善电极的同质性、增大电极-电解质的接触面积、使电极层变得高密度化(减小空隙)、在正极活性物质(氧化物)粒子的接触处产生局部应力的方法,减少正极活性物质粒子的破碎。低弹性系数和可以假塑性变形的硫化物固体电解质作为控制向电极活性物质粒子进行应力集中的缓冲层起到了不错的效果。

    ②全固态锂硫电池

    日本产业技术综合研究所使用已开发的易于成型的高容量电极活性物质Li3NbS4,开发出了利用Li2S-P2S5固体电解质的全固态蓄电池。因为Li3NbS4是通过常温加压烧结可以假塑性变形的材料,所以在室温下的加压成型过程中加压的同时,可形成90%以上的致密成型体。即使充放电时产生大约30%的体积变化,也不产生裂缝,可实现380mAh g-1的可逆充放电并有望发现其良好的循环特性。

    3.新制造工艺下抑制LiNiO2退化

    虽然镍酸锂作为高容量锂离子蓄电池正极材料被抱有期待,但是在高电位充电时周期退化严重,无法充分灵活运用其特性。在目前为止对LiFeO2-Li2MnO3正极材料研究成果的基础上,通过新的制造工艺(Li2NiO3热分解法)的应用,开发出了可保持高容量(>190mAh/g)并大幅抑制了周期退化的锂过量镍酸锂正极材料。

    今后的计划:在研究数据的基础上,寻找正极材料开发合作伙伴,并向电池制造商提供供应。并且,为了进一步改善电池特性,电池技术研究部将进行制造方法的探讨以及异金属置换效果的探讨。另外,该部门也将继续进行LiFeO2-Li2MnO3正极材料的开发以及大型锂离子蓄电池使用的价格便宜且高性能的正极材料的开发。

    4.利用NMR开发电池材料测评技术

    电池技术研究部在广泛应用于有机结构鉴别的NMR(核磁共振)技术上添加了“倾斜磁场”和“电场”,并正在测定作为与电池中存在的离子(阴离子、阳离子)“动向”相关的物性的扩散系数(m2s-1)和移动率(m2s-1V-1)。而且,该部门也在进行使用了扩散系数和导电率数据的解析,对决定了溶解于电解质的锂盐的解离度和离子移动率大小的相互作用力等内容进行预测,并对把它们作为指标的电解质和分离器结构进行设计和提案。

    5.探索镁蓄电池结构材料

    如果能够把轻便的多价金属且在资源上也较为丰富的镁(Mg)作为负极来利用,就可以制造出储能密度高、成本小且较为安全的电池。但是,把Mg应用于可充放电的蓄电池还在基础研究阶段,处于必须探索开发可充放电的正负极材料和适用于两极的电解液的现状。日本产业技术综合研究所发现了某种作为Mg电池的正极材料可进行可逆反应、且作为蓄电池可在室温下进行操作的有机物,同时研究了适用于此电池的电解液,改善了充放电的效果。

    电池技术研究部还进行了关于“使用乙二醇二甲醚类电解液的有机物-镁二次电池的充放电特性”的研究。该项研究首次报告了有机物可以使用在镁二次电池的正极中。该研究团队发现,将该有机正极与金属镁负极、乙二醇二甲醚类镁电解液进行组合后,可以实现室温下约接近2V的放电电压,且能够进行反复的充放电。

    6.开发金属多硫化物正极材料(下一代高能量密度蓄电池用电极材料的开发)

    目前,能够应用在电动汽车上的、能量密度显著提高的下一代蓄电池的开发备受期待。日本产业技术综合研究所开发了结晶度较低的金属多硫化物材料,并发现这种材料拥有一种新奇的充放电机制,是一种高容量电极材料。

    该研究部门开发的新材料与传统材料相比,不仅金属能够进行氧化还原,硫也可以,因此可以飞跃性地提高电池的容量。

    7.实际电极中离子传导率、电子传导率测定方法研究

    蓄电池、燃料电池、电容器中使用的电极是由电子导体和离子导体(电解质)组成的复合体,电子传导率、离子传导率的测定对提高电池性能、明确电池劣化主要原因非常有效。但是,实际多孔电极中的测定方法还未确立,该电池技术研究部门一直在研究开发各种类型、条件下的测定方法。另外,该部门还根据电池、燃料电池等电化学器件开发企业的要求,进行一些共同研究活动。

    目前该部分的主要研究成果如下:利用电化学阻抗进行离子传导率·电子传导率测定;同时测定多孔电极离子传导率·电子传导率的“6端子法”;正确解释电化学阻抗的基础理论和手法。

    8.电池内部反应不均现象可视化

    该项研究由日本产业技术综合研究所、京都大学、立命馆大学、株式会社KRI共同进行,并于2016年5月23日公布了研究成果。

    在该研究中,研究团队为了实现反应不均现象的可视化,使用了可获得二维数据的X射线吸收光谱测定方法。另外,研究团队还确立了在锂离子电池的电极中测量电子传导率、离子传导率的方法。通过在不同性能的锂离子电池电极中使用上述方法进行解析,研究团队最终确定电池内部的反应不均现象是由离子传导所引起的,这一现象会极大地影响电池性能。

    该研究成果有助于进行锂离子电池的实用性设计,可以帮助提高电池性能。尤其是在反应不均现象较为明显的大型电池中,该研究成果将适用于汽车用锂离子电池的设计,并有望延长电池的续航距离、提高电池的安全性。

    9.在电荷载子中使用分子性离子的新型二次电池

    在目前的Li二次电池中,Li+作为电荷载子起作用,因此电池的电压、安全性等都收到Li本质的物性上限制。为此,该研究小组在不使用Li+或Na+的电池中进行了将分析性离子作为电荷载子进行作用的电池实证。

    该电池未来备受期待的优点如下:

    ①比Li更低的电位⇒高电压

    ②高离子传导率⇒高输入、高输出

    ③没有枝晶(dendrite)⇒高安全性

    ④不使用稀有金属⇒低成本

相关报告
  • 《日本产业技术综合研究所(AIST)领衔的研究小组利用大规模计算和原位测量高效地探索多维氯化铯》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2024-10-24
    • 近日,北海道大学工学部Akira Miura副教授和Seiji Tadanaga教授、Google DeepMind 的Akhol Muratasan博士和Ekin Dosh Kübeck博士、广岛大学高级科学与工程科学研究生院Chikako Moriyoshi教授、日本同步辐射研究中心的Shogo Kawaguchi、京都大学研究生院工学研究科的Hiroshi Kageyama教授和日本产业技术综合研究所(AIST)的首席研究员Tetsutora领导的一个研究小组提出了一种使用大规模第一性原理计算(基于量子力学基本原理的理论计算)和原位 X 射线衍射、中子衍射和电子衍射来探索新化合物的有效方法。 近年来,大规模计算预测了大量稳定化合物的晶体结构,并提出了广泛的材料探索空间。 然而,这些结构中的大多数尚未在实验室中成功合成,将计算科学和实验相结合的方法对于高效探索是必不可少的。在这项研究中,以作为半导体和荧光材料被广泛研究的多维氯化铯为对象,目的是发现基于的新化合物,研究人员通过大规模第一性原理计算、同步辐射 X 射线衍射筛选、中子衍射和电子显微镜结构分析等方式发现了三种新的氯化铯。该方法有望用于探索新型材料和高通量实验科学领域。 未来超导体和下一代二次电池等创新技术研究所需的功能性材料将变得越来越重要,但由于其成分自由度高,寻找这类复杂的新材料变得极其困难。 近年来,使用人工智能(AI)进行的大规模密度泛函理论(DFT)*1计算已经预测了数千种稳定的化合物组合,并提出了广泛的材料搜索空间。该研究小组认为,通过分析这些计算预测数据,可以在合成实验之前在计算机上合理地确定目标的优先级,并通过能够进行高速温度变化测量的“原位测量”方法来揭示合成过程中的相变,从而加速对新材料的探索进程。 这项研究的目标是发现基于多维铯(元素符号为Cs)氯化物(氯元素符号为Cl)的新型化合物,该化合物作为半导体和荧光材料被广泛研究,推断其分子式为CsxAMCl 6(x = 2或3,A和M的不同金属),这是一种尚未被发现或报道过的化合物。 首先,通过绝对零度*2下的第一原理计算对已知和未知化合物进行大规模稳定性评估,并结合晶体结构数据库和文献调查,创建了未报告或晶体结构未充分明确的化合物列表。 这种方法可以大幅缩小潜在新型化合物的研究范围。 其次,考虑到氯化物前驱体的稳定性和可用性,在高温下进行氯化物前驱体之间的固相反应。利用大型放射光设施SPring-8*3的BL13XU的放射光XRD可以进行高速温度变化测量,从而明确固相反应的过程。 最后,假设A和M的点位被部分占据,通过X射线衍射和中子衍射、电子衍射进行解析,确定了Cs2LiCrCl6和Cs2LiRuCl6和Cs 2的新多晶型化合物*4,并成功发现LiIrCl6。 本研究通过结合最前沿的计算科学和在大型设施中进行的合成及反应分析,提出了一个新的材料探索框架。这项研究不仅适用于氯化铯,还可以应用于其他材料系统,有望通过结合温度、压力、合成反应和材料特性等信息来加速对新材料的探索。 这项研究得到了日本科学振兴会(Japan)(JP20KK0124)和日本科学技术振兴机构(JST)PRESTO(JPMJPR21Q8)科学研究补助金的部分支持。 研究的成果已于2024年10月16日星期三发表在《Journal of the American Chemical Society》期刊中。
  • 《日本产业技术综合研究所(AIST)开发了一种精确校准卫星上振动传感器的系统》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-01-10
    • 近日,日本产业技术综合研究所(AIST)分析测量标准研究部声波振动标准研究组高级研究员 Wataru Granyama、高级研究员 Tomofumi Shimoda 和研究组组长 Hideaki Nozato 开发了一种使用世界上最低的振动水平(最低1.4皮米)来校准高灵敏度振动传感器的系统。这一成果是通过引入降低噪声影响的模拟计算技术和自动测量位置调整机制来实现的。该系统还被用于根据三菱电机株式会社的委托对卫星搭载用的高灵敏度振动传感器进行校准,日本国立研究开发法人宇宙航空研究开发机构(JAXA)正在开发的技术试验卫星ETS-9(主制造商:三菱电机株式会社)就配备了由该系统校准过的传感器。 在宇宙空间中,一旦卫星进入预定轨道,通常其振动比地面要小得多,环境也更为安静。但在控制太阳能电池板指向太阳以及在对卫星自身姿态调整的过程中,可能会发生非常轻微的振动。由于卫星上搭载的设备有些对振动非常敏感,因此需要对这些极其微小的振动进行测量和量化。用来进行这些工作的高灵敏度振动传感器在发射后便无法进行维修或更换,因此必须事先确保其测量值准确无误,没有偏差。 评估振动传感器测量值准确性最可靠的方法是,以激光波长为基准精确测量振动传感器的灵敏度和相位偏移。具体来说,就是将通过激光干涉仪精确测量的振动级别施加到振动传感器上,并评估此时振动传感器的响应特性。这被称为振动传感器的初始校准。 由于卫星搭载的高灵敏度振动传感器被设计为能够测量0.1 m/s2以下的微小振动,因此在进行初始校准时,需要使用大约0.01 m/s2(约为地球重力的1/1000)的极其微小的振动级别。在这种情况下,振动幅度低至皮米级,极其微小,这会导致激光干涉仪的信噪比恶化,从而使得初始校准变得不那么容易进行。 AIST长期以来一直拥有能够对振动传感器进行初始校准的系统,并且还颁发了校准证书。在使用过程中所采用的常规振动条件,根据振动频率的不同而有所差异,但通常都在大约100 m/s2(大约是地球重力的10倍)这样较高的水平。这种振动水平大致相当于火箭发射过程中所承受的振动水平。 近年来,为了满足产业界的需求,AIST一直在开发一种利用低频(0.1 Hz ~ 100 Hz)微小振动的振动传感器校准系统(2023年5月29日AIST新闻稿)。AIST迄今为止开发的系统都旨在提高振动传感器的可靠性,这些传感器被用于早期检测建筑物和桥梁等基础设施的老化程度。然而,由于激振器性能的限制,该系统的振动频率范围仅限于大约100 Hz,最小振动幅度只能达到几纳米,所以无法满足用于人造卫星的振动传感器所需的在几赫兹~几千赫兹的振动频率范围内的校准需求。因此,AIST决定开发一种新的校准系统,该系统可以覆盖高达几千赫兹的频率范围,并能够评估传感器在更微小振动下的响应(频率响应)特性。 未来,AIST将致力于进一步降低该系统各个部分的噪声水平,以实现使用更微小振动对振动传感器进行校准的能力。这将有助于提高微振动测量技术在各个领域中应用的可靠性,包括人造卫星的精密振动测量。 有关这项技术的更多信息已于2025年1月8日发表在国际计量局(BIPM)和IOP Publishing出版的《Metrologia 》期刊中。(DOI: 10.1088/1681-7575/ad9a6e)