《国家纳米中心携手《科学》杂志发布十大前沿纳米科技难题》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-24
  • 11月24日,国家纳米科学中心(以下简称“国家纳米中心”)携手《科学》杂志向全球发布了十大前沿纳米科技难题。

    十大前沿纳米科技难题旨在为全球纳米科技领域的科学研究提供指引,为探索纳米科技的知识边界、挖掘纳米科技潜能带来新的启迪;涵盖了从基础理论到前沿应用的纳米理论、纳米安全性、纳米催化、纳米生物、纳米医药、原子精准制造、极限测量及纳米科技对光电技术、电子器件和全球可持续发展的支撑与推动作用等十个纳米科技研究领域。

    2023年4月底,国家纳米中心联合《科学》杂志开启了前沿纳米科技难题的全球征集工作。该项工作的目的是深入研究和分析目前纳米科技发展面对的关键问题,国内外纳米科技的发展现状及其在学科支撑、科技进步、社会发展和人类生活改善等方面产生的影响,进一步推动纳米科技的发展,得到了来自中国、美国、加拿大、德国、澳大利亚、新加坡、韩国等二十多个国家从事纳米科技研究的知名科学家和青年学者的积极反馈与响应。

    本次发布的十大前沿纳米科技问题结合当前国际前沿研究、未来科技发展和人类共同需求,对进一步激发纳米科技工作者的好奇心和自由探索的热情,引领未来纳米科技创新发展新趋势,集中力量攻克纳米科技难题,推动人类进步与社会的可持续发展具有重要意义。据悉,《科学》杂志曾于2005年和2021年两次面向全球发布“125个科学问题”,激发了全球科研工作者对未来科技发展的热烈讨论与思考。

    2022年,“纳米科学与工程”被国务院学位委员会和教育部列为一级学科,人才培养体系和职业教育体系更加完善。纳米科技已成为集交叉性、引领性和支撑性为一体的前沿研究领域。

    附:十大前沿纳米科技难题

    1.是否可以构建涵盖量子和宏观物理特性的纳米理论,进而能可靠地预测材料在纳米尺度的特性?

    2.纳米材料的安全性与哪些特性有关?在不同的环境中如何实现对其安全性的有效调节?

    3.纳米科学如何助力生物学发展?

    4.纳米技术将为医疗技术带来怎样的变革?

    5.如何借助可视化技术研究纳米材料的表面和界面?

    6.纳米技术如何影响不同类型催化剂的制备?

    7.如何实现原子精度制造的大尺寸化?

    8.纳米技术将如何提升算力进而助推光电器件的发展?

    9.纳米技术会对电子行业发展产生哪些影响,未来电子器件的能耗极限在哪里?

    10.纳米技术如何助力全球可持续发展?

  • 原文来源:https://www.science.org/content/resource/tiny-ten-experts-weigh-top-10-challenges-remaining-nanoscience-nanotechnology
相关报告
  • 《国家纳米科学中心金纳米棒材料组装研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:万勇
    • 发布时间:2017-12-07
    •   微纳加工方法主要分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中,一个最重要问题是如何实现组装对称性的可调控。组装对称性可调控对于组装结构多样性和组装体功能的丰富无疑是非常重要的。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性似乎是一个难以实现的目标。   国家纳米科学中心和中国科学院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果也在八面体银和钯纳米棒上得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并很好的解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这种方法开辟了一条打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了了有力工具,将为推动纳米组装技术的进步提供助力。   该工作是刘前课题组前期研究(Nanoscale, 2014, 6, 3064;Langmuir 2013, 29, 6232;Chem. Commun., 2012, 48, 2128; Langmuir 2011, 27, 11394)的进一步拓展,已于 11月10 日在线发表在《自然·通讯》(Nature Communications 2017, 10, 13743)。文章链接:https://www.nature.com/articles/s41467-017-01111-4。该工作获得了国家重点研发计划纳米科技重点专项、中国科学院战略性先导科技专项A、国家基金委和欧盟项目的支持。
  • 《国家纳米科学中心在碳纳米管超快相干电子源方面取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2023-11-24
    • 对极端时空尺度上的动态过程进行探索,对于推动科学技术的发展具有重要意义。在微观领域,大部分运动过程都是超快的,尤其在原子级空间尺度上,超快过程可以达到飞秒甚至阿秒的持续时间。鉴于超快表征技术对于科学和技术的进步起到了基础性的作用,今年的诺贝尔物理学奖颁发给了与阿秒光脉冲相关的科研成果。相比于超快光脉冲,超快电子脉冲在展现高时间分辨力的同时,在高空间分辨力上也表现出了优越性,因此被视为有可能超越阿秒光脉冲的下一代超快表征技术。 电子源的单色性对于同时实现高时间-空间分辨至关重要。然而,电子与光场之间的强烈相互作用导致激发电子占据能级分布较宽。这使得依赖传统金属纳米结构的超快电子源产生显著的能散(>600meV)。为解决这一难题,戴庆研究团队提出将碳纳米管作为超快电子源材料,以替代传统金属纳米结构。在之前的研究中,他们已经利用碳纳米管的尺寸效应和量子效应,实现了低能量色散(0.25eV)(Advanced Materials, 2017, 29(30): 1701580) 和40次方极端非线性超快电子发射(Nature Communications, 2019, 10(1): 4891)。在此基础上,戴庆研究团队于近期成功在碳管尖端构建出双势垒结构,这种独特结构可以同时支持共振隧穿发射和单电子发射(Advanced Materials, 2023, 3, 2300185)。 最新的研究工作中,戴庆团队利用直径约为2nm的单壁碳管作为发射体,成功实现了超快共振隧穿单电子发射(如图1)。首先,他们利用含时第一性原理理论(TDDFT)进行模拟,发现在碳管管帽和管体之间可以形成一个耗尽层势垒,其与真空势垒共同形成双势垒结构,因此碳管的零维管帽可以作为电子共振腔,同时支持共振隧穿和库伦阻塞效应。 图1. (a) 碳纳米管超快电子发射示意图。(b) TDDFT计算结果显示,在碳管尖端可以形成一个耗尽层势垒。 然后,他们通过温度控制载流子浓度,从而实现了对尖端双势垒结构的精细调控(如图2)。因此,他们得以成功观测到激光诱导的负微分电阻(NDR)现象,证明了共振隧穿效应。同时负阻峰的峰距可调,暗示了管帽中存在能级重整,因此可以支持库伦阻塞调控的单电子发射机制。 图2 (a) 实验观测到的超快电子发射负微分电阻现象。(b)负阻峰峰距与温度的依赖关系。 同时,他们还观察到了NDR峰的劈裂现象(如图3),TDDFT模拟证明这种现象是由于静态场和激光场的共同作用引起的两个简并量子态的Stark劈裂。这表明可以进一步微调量子化能级,实现更加可控的电子发射。通过能级劈裂程度并结合含时第一性原理计算,可以估计电子发射能散大约为57meV,比金属低一个数量级。利用碳纳米管独特的原子结构,有望实现接近时间-能量不确定性原理限制的超快相干电子源,它有可能使得电子探针同时具有亚埃级的空间分辨率和飞秒级的时间分辨率,这对于包括阿秒电子显微镜(attosecond electron microscopy)在内的许多科学和技术应用具有重要意义。 图3. (a) 负阻峰出现的劈裂现象,(b) 利用TDDFT计算出劈裂对应的能量值约为110meV (对应约11.6V偏压),并估算出电子发射能散约为57meV (对应约6V偏压)。 该研究工作由国家纳米科学中心的戴庆研究员和李驰研究员团队主导,合作单位包括中国科学院物理研究所的孟胜团队,北京大学的刘开辉团队,南京大学的万贤纲团队,以及国防科技大学的戴佳钰、王小伟团队。相关研究成果作以Coherent ultrafast photoemission from a single quantized state of a one-dimensional emitter为题发表在Science Advances杂志上。上述研究成果得到了国家重点研发计划、国家自然科学基金等项目的支持。 论文链接:https://www.science.org/doi/full/10.1126/sciadv.adf4170