《微生物所陈义华研究组成功构建NAD+从头合成的新途径》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-03-04
  • 烟酰胺腺嘌呤二核苷酸(NAD+,辅酶I,维生素B3的活性形式)是所有细胞都必须的基本生命分子之一。NAD+和其相应的还原形态NADH作为质子的受体或者供体参与各种氧化还原过程(如:糖酵解、柠檬酸循环、氧化磷酸化等)。另外,在细胞的生长、分化、调节等非氧化还原过程中,NAD+作为反应底物参与核酸、蛋白质等大分子的修饰,(如:NAD+参与的DNA和RNA修饰、NAD+依赖的组蛋白去乙酰化、NAD+依赖的泛素化等)。NAD+由腺苷一磷酸(AMP)和烟酰胺单核苷酸(NMN)组成。在生物体内,NAD+的合成包括从头合成途径和利用烟酰胺类前体的补救合成途径。现在已经发现了两条NAD+的从头合成途径:天冬氨酸途径(Pathway I)和色氨酸-犬尿酸途径(Pathway II)。

    近日,中国科学院微生物研究所陈义华课题组在链霉菌次级代谢产物保罗霉素生物合成的启发下,设计创建了从分支酸到NAD+的人工合成途径—C3N途径。在C3N途径中,研究人员首先利用参与吩嗪类化合物(PhzE、PhzD)和保罗霉素(Pau20)生物合成的酶与芳香族化合物降解酶(NbaC)完成了从分支酸到喹啉酸的转化;进一步利用NAD+合成途径中的后三步反应,实现了NAD+分子的合成。为了验证这一途径,研究人员将C3N途径构建到NAD+从头合成缺陷的大肠杆菌中,证明了C3N途径可以独立地高效合成NAD+,保障大肠杆菌的正常生长。

      人工设计的C3N途径突破了细胞固有的代谢网络调控限制,还解除了NAD+与蛋白质合成间的耦联。经过一系列优化后,在大肠杆菌中实现了极高水平的NAD(H)积累。随后,研究人员以重要的药物中间体2,5-二甲基吡嗪和手性胺的制备为例,证明了在高水平的NAD(H)底盘细胞中,NAD(H)依赖的氧化还原酶的反应效率得到了显著提升,C3N途径可以方便地应用于高值化合物的高效生产等领域。由于C3N途径的前体分支酸广泛分布于细菌、古菌、真菌和植物中,这一途径在理论上具有广泛的应用潜力。

     人工设计的C3N途径是利用合成生物学手段探索NAD+从头合成问题的一个解答,不仅为研究NAD+这类重要分子合成的基础科学问题提供了新思路,还将有力促进涉及NAD(H)的应用研究。该研究以“Construction of an alternative NAD+ de novo biosynthesis pathway”为题,2021年3月2日在线发表于Advanced Science。中国科学院微生物研究所陈义华组博士生丁勇和李心利为论文并列第一作者,陈义华研究员为论文通讯作者。加拿大劳里埃大学Horsman教授;微生物研究所陶勇研究员、吴边研究员为该工作完成提供了重要的指导和帮助。研究工作得到了科技部重点研发计划、国家自然科学基金委相关人才计划和面上项目的资助。

  • 原文来源:https://doi.org/10.1002/advs.202004632 ;http://www.im.cas.cn/xwzx2018/kyjz/202103/t20210302_5966736.html
相关报告
  • 《微生物所发现真菌合成黄酮柚皮素的新途径》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   黄酮是一类主要由植物产生的多酚类化合物,在工业、食品和制药行业应用广泛。柚皮素作为一种平台化合物,是合成黄酮类化合物的关键步骤。在植物和细菌中,以对香豆酸(p-CA)为前体,经对香豆酰辅酶A连接酶(4CL)和III型聚酮合酶查尔酮合酶(CHS)催化生成柚皮素查尔酮,而后在查尔酮异构酶催化或pH改变自发异构化生成柚皮素。真菌中曾报道黄酮类化合物的产生,但其合成酶和途径鲜有报道。   近日,中国科学院微生物研究所尹文兵研究组利用靶向基因组挖掘策略,在植物内生真菌中发现了一个不同于常规途径黄酮柚皮素合成酶。该酶具有独特结构域组成(A-T-KS-AT-DH-KR-ACP-TE),是一个NPRS-PKS杂合酶,被鉴定为FnsA。研究通过异源表达、底物饲喂实验和体外酶促反应,证实了FnsA以游离的芳香酸(对香豆酸和对羟基苯甲酸)为底物,直接催化形成柚皮素。FnsA KS结构域系统进化分析表明,FnsAPKS属于I型PKS,不同于传统的III型PKS(CHS)。   鉴于FnsA催化柚皮素合成的新颖性,科研人员利用fnsA一个酶在酿酒酵母合成柚皮素,并以此基础从头构建了植物黄酮异鼠李素和金合欢素的生物合成途径。该研究证实了FnsA是一种新型的真菌柚皮素合酶,不同于传统的柚皮素合成途径,FnsA能催化对香豆酸或对羟基苯甲酸直接合成柚皮素。该研究通过工程fnsA从头合成植物黄酮异鼠李素和金合欢素,为微生物高效生产黄酮类化合物提供新策略。   相关研究成果以A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院基础前沿科学研究计划“从0到1”原始创新项目、中国科学院战略生物资源计划及中国博士后科学基金的支持。   尹文兵研究组长期致力于次级代谢产物产生的机理和合成调控机制研究,揭示真核微生物次级代谢产物产生的分子机理、生物合成途径和基因调控机制,为新活性化合物的发现提供新技术和新策略。
  • 《中国科学院微生物所陈义华研究组在庚糖的合成代谢研究中取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-03-06
    • 糖是组成生命的基本结构单元之一。不同的糖基可以聚合在一起形成细胞壁等细胞的基本结构,也可以修饰蛋白和不同的小分子化合物,赋予它们不同的特性。微生物天然产物药物中糖基结构十分丰富。而且,糖基和药物分子的成药性息息相关。分析细菌来源的天然产物中的庚糖可以按结构分为四类:呋喃庚糖、还原型吡喃庚糖、庚糖杀菌素代表的L-吡喃庚糖和潮霉素B代表的D-吡喃庚糖。前两类庚糖的生物合成分别是由转醛酶和甲基转移酶催化形成,机制已经研究得比较清楚,但后两类庚糖的前体和形成机制一直没能得到阐明。 庚糖在微生物中十分重要,因为所有革兰氏阴性细菌的细胞壁脂多糖(Lipopolysaccharide, LPS)结构的核心区都含有两或三个庚糖的寡糖链。这些庚糖是以景天庚酮糖-7-磷酸为前体,通过异构化(GmhA)、1位磷酸化(HldE)、7位磷酸水解(GmhB)、腺苷转移(HldE)和6位羟基异构化(HldD)五步反应得到ADP-L-glycero-β-D-manno-heptose后进一步修饰合成的。 庚糖杀菌素(Septacidin)是革兰氏阳性细菌所产的次级代谢产物,具有抗真菌和抗肿瘤活性,近年来发现还具有诱发细胞免疫原性死亡的活性。这类化合物的衍生物KRN5500已经分别作为抗肿瘤药物和疼痛抑制剂进入临床试验阶段。我们的研究发现庚糖杀菌素中L-吡喃庚糖也是以景天庚酮糖-7-磷酸为前体合成的,而且其前几步反应和革兰氏阴性细菌初级代谢LPS中庚糖的生物合成途径完全一致,催化相关反应的酶可以相互替换。这一发现说明革兰氏阴性细菌的初级代谢和革兰氏阳性细菌的次级代谢共享了保守的庚糖合成途径,为利用革兰氏阳性细菌次级代谢的多样性来改造革兰氏阴性细菌的细胞壁脂多糖结构打开了大门。这也是首次发现微生物可以利用ADP活化的糖基进行次级次级代谢产物的合成。随后的工作中,我们对合成庚糖杀菌素的后修饰过程进行了研究,大致推测了其生物合成的机制。 潮霉素B及其抗性基因是实验室常用的筛选系统。同时,潮霉素B在家禽和家畜饲养中用作抗寄生虫的兽药。在潮霉素B的结构中含有特殊的D-吡喃庚糖结构。根据研究结果推测,潮霉素B中的D-吡喃庚糖也是以景天庚酮糖-7-磷酸为前体,通过衍生而来。根据我们的工作,首次推测了潮霉素B的生物合成途径,部分解析了这一类重要氨基糖苷类化合物的生物合成机制。我们在体外酶学研究中,用潮霉素B中催化景天庚酮糖-7-磷酸生产D-glycero-D-altro-heptose-7-P的异构化酶HygP和大肠杆菌中催化后面三步反应的酶HldE、GmhB 组成杂合体系,发现可以有效地催化生成一种全新的ADP-庚糖ADP-D-glycero-β-D-altro-heptose。利用这种新颖的庚糖来改造大肠杆菌LPS组成和庚糖杀菌素类化合物结构的工作正在进行中。 该项研究得到了科技部973项目、国家自然科学基金委相关人才计划、中国科学院相关人才计划和青年创新促进会项目的资助。相关成果于2018年2月26日在Proc. Natl. Acad. Sci. USA上在线发表。该文章第一作者为中国科学院微生物研究所唐伟博士和郭正彦副研究员,陈义华研究员为论文通讯作者。